SCHOOL OF ENGI..

S
=
&
[

g2
L]
&
(T
]
s
s

MRIGHT-PATTERSON AFB OH

VLSI (VERY LARGE SC.
UNCLASSIFIED DEC 89 AFIT/GCE/ENG/8:

T oy poner

AD-A215 668

A CIRCUIT EXTRACTION SYSTEM
AND GRAPHICAL DISPLAY
FOR VLSI DESIGN
THESIS
Stuart A. Yarost
Captain, USAF
AFIT/GCE/ENG/89D-9

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

[msmen— | 89 i2 18 086

AFIT/GCE/ENG,/89D-9

A CIRCUIT EXTRACTION SYSTEM AND GRAPHICAL DISPLAY

FOR VLSI DESIGN

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Computer Engineering

Stuart A. Yarost, B.S.

Captain, USAF

December 1989

Approved for public release; distribution unlimited

Acknowledgments

I would like to express my appreciation to my wife,
Debbie, for her love and patience while I spent all my time

communing with my computer.

I wish to thank Doctor Frank Brown for his guidance,
encouragement and help when this thesis looked like a never
ending project, as well as Maj Joe Degroat for his enthusiasm
and ideas.

I also would like thank CPT Bob Hammell for his

correction of my drafts, as well as LTC Charles Bisbee and

Capt Bruce George for their encouragement. I have a special
thanks for Tony/ Schooler, whose help with the graphics on the

Sun 3/50s alloved me to complete my thesis.

DTIC TAB
Un.oanoanced

—

By — .- -
Distridution/

—— -

Tpvr il end/er
Dist 1 Seseial

M

ii

Accession For ’
NTIS GRAXI E;

O

d

Juutitieatlon —

e e et

Availanhility CodJos |

Table of Contents

Acknowledgements e ettt e e e et e et
List of Figurescec0.s e e e et i eeeaea
Abstract 000 S et e e e e et
I. Introduction Ceeeaees et e e et
Background s e e et
Problem et et s ettt
Summary of Current Knowledge :
Scope ..., c et e e et e et
Approach e ettt
Sequence of Presentation
IT. Circuit Extractionciiiienennnnnnn
Introduction ettt e,
Goalciiiiiinennn e et et e e
Obtaining a Net- Lls*
Ccnverting the Net-List to
CLIPS Symbolic Form C e
Extracting Higher-Order Components
Forward-Chaining vs. Backward-Chaining
Problems¢c.0u... et et e st et e
Resultsc... et e s et e e
ITT. Graphical Display seeeeiiiiiinieeniinseaetenans
Introduction ceee e et
Tasks .ciuveveneens Gttt ee et ceee e
Finding i~ Relative Locatlon of Components
Finding * -~ .imits of the Components.........
Parsing the CLIPS file ... iiennnnnnennn
Initializing a Viewing Surface
Drawing the Component Symbols
Prcblems et et ae et e
Results e e s e e e e
IV. Clock Generator Circuit Example
Introduction e e e
Extractioncieieuneens et ettt
Display e ettt e e
Summary e h s et e e e e n et e e

iii

ii

-

= O 0]

(-

13
13
15

17
18
23
25
30

32

32
32
33
34

-~

2D
36
37
40
44

45

45
47
48
51

V. Conclusions and Recommendations «...e.e.eeeees.. 55

INtrodUCEION v vt i ittt i i i e et e et tensennenneas 55
CONCIUSIONS 4ottt nennseessneoteensannnnenss 55
Recommendations ...cieiieneeneernessonnannens 57
SUMMATY + e ot oo v teooeronncannesoessssenssnasas 60
Appendix A: Extraction Codeiuieitieceennennens 62
Appendix B: Graphical Display Codec.vieriiennenn. 81
Apperidix C: Test Code and Circuit Example File 99
Appendix D: User's Manualcetcieneennnncennns 111
Bibliography e et i et et et 114
Y T o S e e e e s s s e s e e 115

iv

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

List of Figures

AFIT CAD cycle with Graphical Display
Graphical Display Sequence of Events
Net~List used by Esimviiiiiiinnnnnnnnn.
CLIPS SymboliC FOXM .t iiveeeneerseacaseconcannns
Logic Conporents Gttt ee et et
Legal Component Namescciuiteeennnennnnss
CLIPS Code to Extract Inverter

CLIPS Code to Add ID or Delete Transistor

CLIPS Code to Extract Inverter and Find New
x and vy Coordinatesiiiiiiiiieiinnaieanoann

Circuit File with EXtremaciveeeueeenss
Size Level of Implemented Symbols e
Symbols Implemented by the Displayo
Function to Draw a Buffer00cc....
Circuit Diagram of Clock Generator
Extracted Clock Generator Circuit
Batch file to Open Windowoeeeeeennnenn.
Display of Whole Circuitcciiiiiiivnn..
Close~Up Display of Circuitciviviinnn.

Display Input SeSSION ..euteieenererroonnncenen

16

18

20

21

29

34

36

38

39

41

46

48

49

50

52

54

AFIT/GCE/ENG/89D-9

Abstract

This thesis proposes a system for higher-order 1logic
extraction of components from a net-list of transisturs and
the graphical display of the extracted components. Critical
sections have been implemented to demonstrate the feasibility
of the system. These sections include a prototype expert
system written in CLIPS and a graphical display capable of
displaying extracted components on a Sun workstation.

Extraction techniques which were developed in this
effort use pattern watching and multiple passes. Graphical
techniques used in the display include simple line drawing and
translation of images.

This research has the potential to provide savings of
time and effort to engineers designing new circuits or
reverse-engineering older circuits for which no adequate
specifications exist. This system will also help to close the
design cycle and allow the designer to assure that what he has

physically designed is what he logically designed.

vi

A CIRCUIT EXTRACTICN SYSTEM AND

GRAPHICAL DISPLAY FOR VLSI DESIGN

I. Introduction

Background

The design of a very large scale integrated (VLSI)
circuit can take man-years, and can cost millions of dol.ars.
Engineers are searching for ways to reduce the amount of time
and the amount of money needed to desiagn such circuits.
Computer Aided Design (CAD) tools reduce the time needed.

Another task that takes many man-hours is the redesign
of existing VLSI circuits whose original documentation is
either missing or inaccurate. Reverse-engineering is the
taking apart of an existing circuit to find how it is put
together. This task is much harder than the original design
cf a circuit.

The tasks of designing a circuit and reverse-engineering
a circuit have many common problems. In both cases,
extracting the logic of the circuit from the silicon layout
and being able to display the logic of the circuit would help
facilitate the process. Finding ways to make these tasks
easier i1s a current area of research at many institutes of

higher learning, and in many companies.

The CAD cycle starts with the design of a circuit, and
finishes with the production of the circuit. The closing of
this cycle, to verify that a circuit is what it was designed
to be, is called verification. At the Air Force Institute of
Technology (AFIT), a number of theses have been written in the
last few years dealing with the CAD cycle and the reverse
engineering of circuits. CPT Erik Fretheim, USa, did research
on the reverse engineering of VLSI circuits using pattern
recognition techniques to identify the different components
on a silicon chip (1:1-103). CPT Mike Dukes, USA, used the
PROLOG language to extract the circuit 1logic of a chip
(2:1-154). Both suggested further research.

The CAD cycle at AFIT needs a number of additional tools
to add to the capabilities of those doing circuit design. The
same tools can aid the reverse engineering of existing VLSI
circuits. This thesis documents the production of such a
tool, a graphical display which shows the logic of a circuit
using standard logic and gate symbols. This tool uses the
coordinates from MAGIC to 1locate the components in the
displav, and to locate the part of the circuit to view. The
current CAD cycle at AFIT includes the design ot circuits in
the VHSIC Hardware Description Language (ViiDl,), their layout
using MAGIC and their simulation at the logic-gate level using
ESIM.

VHDL 1is used to completely specify a circuit, and to

-

simulate 1t to contirm that the circuit designed is what 1is
needed. VHDL simulations of a circuit can include simulations
from the perspective of timing, logic, connections, and
components. Once the circuit has been designed, that design
must be converted to components on a silicon chip. MAGIC is
the CAD tool used to lay out the physical structure of the
circuit. CIF can be used to convert the MAGIC file to "cif"
(Caltech Intermediate Format), which details the actual

physical structure of the chip. ESIM is used to simulate the

logic operation of the circuit that has been laid cut using

MAGIC.

The VHDL circuit descriptien must pe converted to MAGIC
manually. A MAGIC file is converted to "cif" format by the
program CIF called from within MAGIC. Tre "cit" file can be
converted to an ESIM "sim" file using the program MEXTRA. The
normal flow is VHDL to MAGIC to CIF to ESIM to MAGIC until the
circuit performs correctly. Figure 1 displays the current CAD
cycle at AFIT, with the addition of the graphical display
produced for this thesis completing the cycle back to the
original logic design.

VHDL does not check a pnysiccl laynut of a circuit, only
the interconnections and logic structure. Since VHDL is used
to simulate an actual circuit design, the task is to insure
that the MAGIC circuit duplicates the interccnnections that

were simulated in VHDL. This problem, as well as the problem

r;r':f"‘lﬂ‘“ Ry
AT 2 ,
- ," LT L
H o e ! ' '
NS GIRE A { YL i
1y VAR
e -
;
It
it
,
_4 _ _ _ R e e
T T el
TN 4 - T
R Joig 7 Lo - -
ey [- ; .
,‘ Simulatio R
‘ R
- T % S = T - - - -
.
R
- |
- i
-
r
N
L
N | !

Fiqure 1. AFIT CAD cycle with Graphical Display

of displaying the logic of an unknown circuit, are problems

that need solutions.

Problem

This thesis was undertaken to help solve some specific
problems. The overall task was to add some quick, visual
feedback to the AFIT design cycle. A graphical display helps
the engineer to check if the design of the circuit he laid out
has the correct logic. This disply is what has been built.
It also helps determine the function of an unidentified
circuit, as well as that of a circuit for which no
documentation exists. A graphical display is a method to
display and manipulate information in a graphical manner, as
contrasted with a tabular manner. Instead of 1listing the
components and their gates, a graphical display will show a
pictnrial representation of each component and its respective
gates using standard logic and electrical engineering symbols.
A visual representation in this manner is typically easier to
understand than a tabular listing of components.

A graphical display was built, using a symbolic form for
data storage. The symbolic form was used to allow the
manipulation of the net-list by the symbolic language. A
symbolic form 1s a form that a symbolic language, such as
PROLOG, can understand. Fach symbolic language has its own

requirements that need to be satisfied by a symbolic form that

t can read.

To create the graphical display, an expert system was
written to determine the logic of a circuit from a list of
component transistors of a circuit (net-licst). This expert
system was built direct’y on the work of CPT Mike Dukes, USA
(2:1-154). The major difference fretween the extraction
routines CPT Dukes created and the cne uscd for the front-end
of the graphical display is the symbolic language used. CPT
Dukes used PROLOG, a backward-chaining language, while the
expert system for the graphical dispiay was written in CLIPS
(e Language Integrated Production System), a
forward-chaining rule-based language. Extencions to CPT
Duke's work include the addition of position information and
scaling information.

After the expert system was written, a graphical display
was written using the Sun Core graphics commands on a Sin 3
workstation. The language that was used to rcad the symbolic
files produced by the expert system, and to drive the graphics
routines, was C.

This thesis provides a two-part solution for the
aforementioned problems. First, the higher-order logic
components are extracted using the forward-chaining expert
system. Then the output of the expert system is used to
create a graphical representation of the extracted components,

in positions related to their positions on the circuit. The

solution to the second part of the problem relied on the

completion of the solution to the first part.

Summary of Current Knowledge

At present, the representation of a circuit in symbolic
form has been achieved by CPT Dukes (2:33-99). The symbolic
language he used was PROLOG, a backward~chaining AI
(Artificial Intelligence) language. Using PROLOG, he was able
to start with a list of trarsistors and finish with a list of
higher-order components and logic gates.

CPT Dukes started with a MAGIC "cif" file of a circuit.
He then used the program MEXTRA to obtain a "sim" file. 1In
this conversion, all the hierarchical information that is
present in the original "cif" file is lost. After running a
LEX program "upper" to convert all letters to uppercase, he
converted the file to a format that PROLOG could load using
"sim2pro", a program he wrote in C. He used a PROLOG program
called TRANS to extract a higher order logic-gate description
of his circuit. The higher-order logic description is 1in
tabular form.

CPT Dukes used the file created by TRANS to verify that
the circuit laid out was the circuit designed in VHDL. He is
using this technique 1in further research into formal
verification.

I have found no specific reference in the literature on

converting a symbolic representation of a circuit to a
graphical representation. Although there is a plethora of
information on how to do graphics and routing, that
information has to be integrated to achieve the desired

results.

Scope

The scope of this project was to provide an expert system
program which extracts a higher-order logic representation
from a net-list, and a graphical display capable of displaying
that representation on a graphics device. The graphical
representation shows the circuit by using files produced by
the expert system. The display allows choice of level of
representation to be viewed (hierarchy), and area of circuit
displayed (zooming).

The first part of Figure 2 contains a sample file that
has already been parsed to the form that CLIPS can read using
a program written for the thesis,"sim2clip”. The file
contains only n and p type transistors. The second part of
Figure 2 shows a file of the components that have been
extracted from the first file. These components are a higher
order representation of the «c¢ircuit composed of the
transistors in the first part of figure 2. The last part
shows what the graphical display would look like for that

circuit, using the higher level compconents.

(p 128 0Z_pgql vdd 300 21596.3 =-26700 -24000)
(n 450 449 520 300 450 3300 —-1350)

(n 498 520 gnd 300 450 2700 -1350)

(n 453 gnd 329 1200 450 25500 -2250)

(n 447 329 gnd 1200 450 23550 -2250)

(n 584 gnd 533 300 13497.8 -5550 9000)

(p 447 584 vdd 300 6748.75 6150 4200)

(p 584 vdd 533 300 13647.8 -5550 4050)

(p 453 329 539 1200 900 24750 1200)

(p 447 589 vdd 1200 900 23250 1200)

(p 498 449 vdd 300 900 2700 900)

(p 450 vdd 449 300 900 3900 900)

(n 447 gnd 584 300 3299.75 6150 10050)

(n 128 gnd 0Z pgl 300 17996.8 =-29700 14400)

CLIPS file of unextracted transistors
EXTRACTS TO

({buffer 447 533 300 6825)

(inv 128 0Z pgl -28200 -4800)

(nand2 genlS 498 450 449 3150 -225)
(nor2 genlé 447 453 329 24262.5 -525)

Extracted Components
VISUALIZED AS

[
4471 "> 553
4958—]
D443
sso—L_/
447 =5
553— " 7
J’\\\\ . - Pl

Graphical display

Figure 2. Graphical Display Sequence of Events

Approach

The graphical display breaks down into four distinct
areas: representing the circuit data symbolically, extracting
the higher order logic components, locating their correct
relative location on the display, and actually drawing the
image on the screen.

PROLOG is not the ideal choice to represent the circuit
components, nor to manipulate them to obtain the higher order
logic components. A forward-chaining AI language can
manipulate the symbolic representation with less programming,
and is easier to understand and maintain. CPT Dukes's code
was, therefore, converted from PROLOG into CLIPS (a
forward-chainer), adding the ability to pass along position
information. His C program "sim2pro" was altered to parse the
"sim" file into a symbolic form that CLIPS needs at the
outset (2:28-30).

Locating the correct relative positions for the extracted
gates required the use of a simple mathematical routine. The
routine averages separately all the x and y locations of the
component gates or transistors. The new x and y 1is the
location of the new gate. This is done using CLIPS, allowing
different scaling factors to be used, to allow presentation
on different graphics devices.

The coding to produce the graphics took relatively little

time once the graphics device and graphics programs were

10

determined. Depending on the capabilities needed, the Sun
3/50 and Sun 3/60 workstations have three different graphics
packages available. The choices are Pixwinn, Sun CGI, and Sun
Core. All three packages were able to support the graphical
display. Sun Core is the most limited in interfacing with
Sunwindows, but is also the easiest to understand and to use
for drawing. The built-in graphics on the Sun workstations
were able to handle the graphical display, when Sun Core

graphics were used.

Sequence of Presentation

Chapter 1 has provided some background on the AFI1 CAD
environment, and the need for a graphical display. The
problem was explained, as well as the scope of the problem and
solution. An approach to the problem was summarized.

Chapter 2 is an explanation on how the extraction process
works. The goal is explained, as well as the procedure. The
relative merits of forward and backward-chaining are also
discussed. The problens that occurred are explained, as well
as the results.

Chapter 3 1is a discussion of the graphical display
portion of the thesis. First is an explanation of the goal.
Next, the procedures followed to achieve that goal are
outlined. Problems encountered are then discussed, followed

by a summary of results.

11

Chapter 4 details the extraction and display of an
example circuit, a clock generator chip. The quality of the
extraction and display are discussed.

Chapter 5 presents overall conclusions and
recommendations. 1Included are possible improvements to the
extraction program and to the program that displays the
graphical display.

Appendix A contains all the extraction code, as well as
other code needed to facilitate the extraction.

Appendix B contains all the code pertaining to the
graphical display.

Appendix C contains all the test code as w:ll as the
"sim" file and CLIPS file of the clock generator circuit used
as an example in chapter IV.

Appendix D is a user's manual for the extraction

routines, and the graphical display.

12

II. Circuit Extraction

Introduction

This chapter discusses the first part of the process of
creating a graphical display. It covers how the extraction
of higher-order components from lower-order components was
achieved. The sections of the chapter are the goals aimed
for, procedures for obtaining a suitable file to start with,
converting that file to a usable form, and the extraction
process. This chapter also covers the difference between
forward-chaining and back-chaining, problems encountered while
creating the extraction routines, and the results of the
extraction portion of this effort. A users guide on how to

do the extraction process is included as part of appendix D.

Goal

The creation of a graphical display to help the reverse
engineering of VLSI circuits can be divided logically into two
parts: (a) representing a circuit symbolically and extracting
the higher-order 1logic gates from the circuit, and (b)
displaying the symbolic information on a graphics-capable
device. This separation allows completion of either part
independently, since neither part is dependent on the other

part except for the data interface. The only knowledge needed

by both parts is the exact format of the file that is the

product of the extraction process, and that is read by the
program that creates the graphical display.

For purposes cf this thesis, representing a circuit
symbolically 1is the conversion of the information that
describes the circuit into a form that a symbolic language
(such as PROLOG or CLIPS) can use. This symbolic form of the
list of transistors (net-list) can then be manipulated by the
symbolic language.

Extraction is the process of replacing several components
of a given level of complexity with a single higher-order
component that performs the same logical function. This
higher-order representation is easier for the engineer to
understand.

Representing a circuit in a symbolic form and extracting
the higher-order 1logic gates was the first part of the
research completed. A file containing higher-order 1logic
constructs, derived from a list of N and P type transistors
was produced. The problem divided into three smaller tasks.

The first task was to obtain a net-list of the
transistors in a circuit in a form that could be understood
by an engineer; the second task was translating that list into
a form that CLIPS could understand; and the third task was
using CLIPS to extract the higher-order logic constructs from
the net-list, leaving a file of the components for further

processing, extraction, or display.

14

Obtaining a Net-List

As stated earlier, the first task in the process of
extracting higher-order components from lower-order ones is
to get a net-list of the transistors. Obtaining a suitable
net-list is not a difficult task. MAGIC can produce a file
of a layout in "cif" format. This "cif" file does not have
the circuit information in a form that is understandable as
a net-list. The file contains information on the different
physical layers of a polysilicon chip, not how these layers
combine to form transistors, capacitors and other components.

The "ci1t" description is carried out in a hierarchical
manner: when a section of a circuit, a cell, 1s described
only once, then the cell name is repeated wherever else that
cell exists in the circuit without repeating the information
contained in the original cell description. Cells can be
recursively described, using cells within cells.
Hierarchical information reduces the amount of information
needed to completely describe a circuit

The "<if" file, run through MEXTRA, is converted to a
form that contains a readable net-list. This form is the one
that the simulation program ESIM can use to run a simulation
of the operation of a circuit. MEXTRA translates the
information on the physical layout of the circuit into a list
of transistors, resistors, capacitors and other types of

components. It also contains the size, 1location, and

15

interconnections between the components. All hierarchical
information has been lost, however. The information on the
sizes and locations of the components, and interconnections
between the components, is what is needed to dc the circuit
extraction, but it is in a format CLIPS cannot read. Figme 3

shows a sample of the file that is produced by MEXTRA.

NODES WIDTHS COORDINATES
128 0Z_pgl Vdd 300 21596.3 -26700 -24000
53 0Z_pg2 Vdd 300 21596.3 73200 -29400
277 vdd 233 300 13647.8 24450 -9900
329 277 vdd 300 6748.75 18600 —~11400
53 vdd 0Z pg2 300 21596.3 53100 -17850
233 53 vdd 300 21596.3 39000 -17100
277 VAd 233 300 13647.8 24450 -1275C
450 449 520 300 450 3300 =-1350
498 520 GND 300 450 2700 -1350
I1Z_go GND 498 300 450 1500 -1350
424 453 GND 300 450 27600 -1650
453 GND 329 1200 450 25500 -2250

H
=<
o
tv

oo O0O0O0oTTTTT'T

Figure 3. Net-List used by ESIM.

The first field indicates what type of component is
listed in that 1line. A "p" indicates a p-type transistor
while an "e" indicates an n-type transistor. The only
components used for extraction are n and p type transistors.
Symbols for other types of components (such as resistors or
capacitors) can also appear, but are 1gncred for the purpose
of extraction. The next three fields are the node names of
gate, source, and drain of the transistor. A node name can

be any alphanumeric string. Node names are assigned by MAGIC

16

if not explicitly given by the designer using MAGIC. The next
two fields are the x width and y width of the transistor.
They are not used in the extraction process. The last two
fields are the x and y coordinates of the transistor,
respectively. The widths and the coordinates must all be real
numbers.

Using the first line of Figure 3 as an example, the

fields have the following meaning. "p" indicates a p type
transistor. "128", "OZ pql" and "vdd' are the gate, drain and
source, respectively. "300" and "21596.3" are the x and vy

widths, which are not used in extraction, and "-26700" and "-

24000" are the x and y coordinates.

Converting the Net-List to CLIPS Symbolic Form

The next task, getting the file in a form readable by
CLIPS, was accomplished by using a parsing program, "sim2clip"
(see appendix A), written in C. It was converted from the
program "sim2pro", written by CPT Mike Dukes (2:127-131), and
altered to parse to CLIPS symbolic form instead of PROLOG
symbolic form. This CLIPS form can be read by CLIPS using the
load-facts predicate of the CLIPS language. Figure 4 shows
the file of Figure 3 after its conversion by "sim2clip".

The fields of the symbolic file produced by "sim2clip"
correspond one-to-one with the fields of the file produced by

MEXTRA.

17

(p 128 0Z pgl vdd 300 21596.3 -26700 -24000)
(p 53 0Z pg2 vdd 300 21596.3 73200 =-29400)
(p 277 vdd 233 300 13647.8 24450 -9900)

(p 329 277 vdd 300 6748.75 18600 -11400)
(p 53 vdd 0Z pg2 300 21596.3 53100 -17850)
(p 233 53 vdd 300 21596.3 39000 -17100)

(p 277 vdd 233 300 13647.8 24450 -12750)
(n 450 449 520 300 450 3300 -1350)

(n 498 520 gnd 300 45C 2700 -1350)

(n 12 _go gnd 498 300 450 1500 -1350)

(n 424 453 gnd 300 450 27600 -1650)

(n 453 gnd 329 1200 450 25500 -2250)

Figure 4. CLIPS Symbolic Form

Legal wvalues for the fields are the same, with one
exception: "p" and "n" are the only legal values for the
first field. "p'"'s pass unchanged, "e"'s are changed to
"n"'s, and any lines that begin with any other symbol are
removed. The only changes are the addition of the parenthesis
at the beginning and end of each line, and the substitution
of a "n" for any "e" in the first field, which indicates the
type of component. The only changes necessary to allow CLIPS
to read the file using the "load-facts" predicate (3:59) is
the addition of the parentheses at the beginning and end of
each line. The removal of any 1line not representing a

transistor is for ease of extraction.

Extracting Higher-Order Components
Extracting the higher-order logic components can begin

once the net-list is in a usable form. The algorithm used is

18

relatively straightforward. First the file produced by
"sim2clip'", containing all the transistors, is loaded into
memory. Then groups of components that can be combined to
form higher-order components are found, pattern-matching the
transistors to form higher-order logic components. The facts
denoting the used transistors are retracted, while the newly
extracted gates are written to a new file.

The name of this new file is of the form "outcompX.clp",
where "X" is the extraction level. The components that remain
at the end of the extraction are put in a file similarly
called "compremX.clp'", where "X" has the same meaning.

The file to which the newly extracted components are
written can be used later in the same manner, to form even
higher-order logic components. Each iteration of this process
reduces the size of the database of components used for
extraction. As each new component 1is extracted, fewer
components are left to pattern-match against, reducing the
memory and time required to do each succeeding match.

Figure 5 shows a portion of a file of extracted
components. The first field identifies the component-type.
The last two fields are x and y coordinates, respectively.

The rest of the fields are node names, except when a unigue

identifier ("genxx", where xx is a number) is added as the
second field. The use of a unique identifiei 1is explaincd
later.

19

(inv 53 0Z_pqg2 74850 =4425)

(inv 233 53 41325 -11325)

(inv 277 233 24375 -8775)

(nand2 gendd 498 450 449 3150 -225)
(inv IZ_go 498 1500 -225)

(inv 424 453 27450 0)

(nor2 gen4s 447 453 329 24262.5 -525)
(nor2 gendé6 329 424 447 20475 -675)
(inv 450 424 17025 =-675)

(inv 449 443 5175 -900)

(inv 177 444 10575 =1050)

(inv 444 450 14925 -1050)

(inv 443 177 7275 -1050)

(inv 128 0Z_pgl -28350 -4200)

(inv 584 533 -5550 5100)

(inv 447 584 6150 7125)

(inv 533 128 -12825 5025)

Figure 5. Logic Components.

The fields have the following meaning in the first line
of figure 5: "inv" stands for inverter, "53" and "OZ pg2" are
the input and output of the inverter, and "74850" and "-4425"
are the x and y coordinates. The legal values for the node
names and the x and y coordinates are the same as in the
previous files. The legal values for the first field, the
component names, and their corresponding values, are listed
in figure 6.

As mentioned previously, the 2xception to what the fields
represent is if the second field starts with "gen". 1In that
instance, the second field is a unique identifier used for the
extraction process. All components that have any
interchangeable inputs or outputs need this identifier. This

unique identifier is added to a component listing during the

20

ntrans n-diffusion transistor
ptrans p-diffusion transistor
inv inverter

tgate t-gate

nand2 2 input NAND-gate

nor?2 2 input NOR-gate
clk_inv clocked inverter
buffer buffer

mux multiplexor

Xnor exclusive NOR gate

Xor exclusive OR gate

dff D flip-flop

Figure 6. Legal Component Names

extraction process.

The reason the unique identifier is needed is the lack
of a back-tracking facility in CLIPS, and the need to be able
to bind a component to a variable to be able to retract it.
Without back-tracking, each permutation of the order of the
interchangeable gates must be checked explicitly. For the
example of a NAND-gate with 3 inputs, A, B and C, the
component needs to be checked for matching for further
extraction with the input gates in 6 different orders: ABC,
ACB, BAC, BCA, CAB and CBA.

The unique identifier allows CLIPS to try to
pattern-match a component with interchangeable gates with the
gates in all possible permutations. In all cases, the
component will have the same unique identifier. Figure 7
shows the CLIPS code to extract an inverter, and the need for

a unique identifier.

21

Figure 7 shows how, for the extraction of an inverter
from n and p type transistors, each transistor had to be
checked with its source and drain interchanged. The unique
ID allows the transistor-fact to be retracted, no matter which

configuration of source and drain is correct.

(defrule inverter
(or (ptrans ?idl ?gate vdd ?a ?x1 ?yl)
(ptrans ?idl ?gate ?a vdd ?x1 ?y1l))
(or (ntrans ?id2 ?gate gnd ?a ?x2 ?y2)
(ntrans ?1d2 ?gate ?a gnd ?x2 ?y2))
?p <- (ptrans ?id1l $?)
?n <~ (ntrans ?id2 $7?)
=>
(bind ?xa (/ (+ ?x1 ?x2) 2))
(bind ?ya (/ (+ 2?2yl ?y2) 2))
(retract ?p 7?n)
(fprintout component
"(inv "?gate" H2M NDPyal "?ya")"crlf))

Figure 7. CLIPS Code to Extract Inverter.

The reduction of the fact base by retracting the
components used to build extracted higher-order components
allows parallelization of the problem. Different portions of
the circuit can be run through the extraction process
separately, then the remaining lower-order components not
already used in an extraction can be combined to catch any
remaining higher-order components that were not extracted
before.

The CLIPS rules to extract higher-order components can

be combined in several ways. The underlying principle is that

22

components that are extracted by a rule in a file should not
be used for further extraction by another rule in the same
file. Following that principle, all rules that extract
higher-order components from the same type of lower-order
components, can be grouped together in a single file. The
rules for different components do not have to be combined in
a single file, however. The extraction rules could be
separated into a single file for each component, at the
extreme. More rules to be checked against in a single file
means slower running of the program, and greater memory usadge.
Fewer rules in a single file therefore means faster execution,
and less memory usage. The complete code to do the extraction
is in multiple files, grouped by which lower order components

are needed (see appendix A).

Forward-Chaining vs. Backward-Chaining

There are inherent advantages and disadvantages in using
either forward or backward-chaining to extract higher-order
logic gates from a net-list. Both methods allow the
parallelization of the problem, as explained in the previous
section, as well as the ability to do multiple passes to
reduce the complexity of the problemn. CPT Mike Dukes used
PROLOG (an inherent backward-chainer) to do his extraction
(2:31-87), while I used CLIPS (4:1~98), an inherent

forward-chainer. The baslic difference between forward and

23

backward-chaining is that backward-chaining starts with the
goals, and works back to find applicable facts or sub-goals
(3:100-102), while forward-chaining fires any rules if there
are applicable facts (3:102-105), and then reaches the goal.

CLIPS allows the easy insertion or deletion of rules.
If a new rule is needed, it can be added without any other
modification to the code. What must be watched is the order
in which the rules are listed, as well as the side-effects of
the new rules. With PROLOG, facts and rules can be added
quickly, but with greater modification to the rest of the
code.

Both forward and backward-chaining need to remember
states already tried. Forward-chaining remembers patterns
already tried, for a rule, and retains them in memory until
there are no other combinations of facts to pattern match, or
the rule has been satisfied. Backward-chaining needs to
remember all prior goals up until the main goal, as well as
the pattern matching for the individual goal.

CLIPS has many more built~in predicates than PROLOG does.
Many of the functions that had to be written to do the
extraction in PROLOG were included in CLIPS(4:1-98). Another
advantage of CLIPS is the ability to compile the CLIPS source
programs on any machine that has a C compiler.

One big advantage a backward-chainer (PROLOG) has over

a forward~chainer (CLIPS) is the ability to back up and try

24

different permutations to satisfy a goal. The lack of this
ability in a pure forward-chainer is one disadvantage that
CLIPS has, and necessitated some extra programming to get the
same result.

Another disadvantage of CLIPS is its inability to do list
processing and recursion. These processes, used together,
would make the extraction problem more tractable.
List-processing would allow different permutations of
interchangeable inputs to be tried with a single rule, while
recursion would allow a rule to handle components that might
have any number of interchangeable inputs. The lack of these
abilities, as well as the inability in CLIPS to bind an OR
clause (3:26,34), necessitates the need for a unique
identifier with components that have two or more
interchangeable inputs or outputs.

Even though CLIPS has several disadvantages, the
advantages of ease of programming, readability of code, and
portability of the CLIPS program outweighs these

disadvantages.

Problems

A number of problems complicated the extraction of the
higher~order logic gates. These problems included running out
of memory, slowness of execution, different representations

of the same component using the same inputs in different order

25

and multiple copies of the same circuit.

The memory used by the program is directly related to the
number of components in the original file and the number of
rules in the program, as well as being exponentially related
to the number of pattern-matches needed to extract the
higher-order components. The problem of running out of memory
was reduced by running the program on a UNIX machine, instead
of a DOS machine. Since UNIX does not have a limit of 640k,
the program is able to access greater amounts of memory. The
Galaxy system, an ELXSI 6400 that was also used, has 64
megabytes of main memory.

Another way to reduce the amount of memory needed is to
break the file of rules into a number of smaller files. Each
file contains a subset of related rules. This splitting of
the rules substantially reduces the memory needed. With all
the rules for the first level of extraction in a single file,
a DOS based machine with 640k of useable memory could not
finish the extraction. Separating those rules into two files
allowed the DOS machine to finish the extraction.

The last part of the solution is to run only part of the
net-list at one time. As explained earlier, the problem is
inherently parallel. Using only part of a net-list at a time,
and combining the results, uses much less memory since all
the net-list is not in memory at the same time and the amount

of patterns that need to be checked is exponentially smaller.

26

The methods used to take care of the memory problem also
take care of the speed problem. Breaking up the rules and the
net-list decreased the execution time by a factor of two. The
sum of the time needed to do the net-list in parts, and to use
only part of the rules is less than the time needed if all the
net-list is processed at once with all the rules. This is
because the number of rules add to the processing time
exponentially, instead of linearly.

The problem of keeping only one copy of each component
in the fact base at any given time was the most difficult
problem to solve at the beginning. There are two ways that
a component can be duplicated in the fact base.

The first way is an exact duplicate component, except for
the position coordinates. Two transistors can be in a "cif"
file with the same node names and different x and vy
coordinates (there can be more than one transistor with
identical gates on a VLSI circuit, replicated to handle speed
and power requirements). The only difference between these
components is their position information. Only one transistor
with each set of node names is needed for the extraction of
logic gates. Extra copies of transistors will cause errors
in the extraction process. These duplications are handled by
the CLIPS routines that remove exact duplicates as well as
give each individual transistor a unique identifier.

The second form of duplication occurs if a component has

27

interchangeable inputs. Two components could have the same
inputs, but in a different order. If the 1inputs are
interchangeable, they do not have to be in the same order to
make the components identical. A transistor's source and
drain are interchangeable, so a transistor of the form (gate,
source, drain) is identical to one of the form (gate, drain,
source). Transistors are not the only logic components that
cause this problem. Any component with interchangeable inputs
or outputs, such as NAND gates or NOR gates, has this problem.

Back-tracking can take care of this problem in a
backward-chainer, but extra work had to be done when using
CLIPS.

CLIPS code was written to help alleviate the problem of
interchangeable nodes for a transistor. A unigque identifier
is added to each transistor, checking for duplicates and
removing them before any logic extraction is done. This
unique ID allows the program to try different input and output
combinations, then use the one that matches the pattern. As
each transistor is given a unique identifier, the fact base
is checked to ensure that no transistor already has those
exact node names for inputs and output. If there is no
duplicate, the transistor 1is asserted with a unique
identifier. 1If there is a one, the transistor is retracted.
Figure 8 contains example CLIPS code that does the removing

of duplicates, as well as the addition of a unique identifier.

28

(defrule add-id-n

(declare (salience 101))

?n <- (n ?gate ?drain ?source ? ? ?x ?Yy)

(not (ntrans ? ?gate ?drain 7source ? ?})

(not (ntrans ? ?gate ?source ?drain ? ?))
=>

(retract ?n)

(assert (ntrans =(gensym)

?gate ?drain ?source ?x ?y)))

(defrule del-id=-n
(declare (salience 101))
?n <- (n ?gate ?drain ?source ? ? ?X ?vy)
(or (ntrans ? ?gate ?drain ?source ? ?)
(ntrans ? ?gate ?source ?drain ? ?))
=>
(retract ?n))

Figure 8. CLIPS Code to Add ID or Delete Transistor.

This solution will work for components with two or three
interchangeable inputs or outputs. For more than that number
interchangeable inputs or outputs, the number of combinations
becomes too great. The number of permutations needed to be
tried for each component increases exponentially with the
number of interchangeable inputs or outputs the component has.
For two, two combinations needed to be tried, for three, ~ix
combinations needed to be tried, and for four, twenty four
permutations need to be tried. The number of permutations in
the order of the interchangeable inputs or outputs that needs
to be checked is n!, where n is the number of interchangeable
inputs or outputs.

For multiple components, each with three or more

29

interchangeable inputs or outputs, the problem is even worse.
As explained earlier, multiple inputs or outputs which are
interchangeable mean that more patterns need to be checked.
The multiplying factor is (aJ)b, where a is the number of
interchangeable inputs or outputs in a single component, and
b is the number of components that must be matched that have
that number. For components with more than three
interchangeable inputs or outputs, using a unique identifier
will not be able to replace 1lists, recursion, and
backtracking. The number of different patterns that would
have to be checked is prohibitively high. For the scope of

this thesis, this limitation did not cause a problem, but for

a general purpose extraction and display system, it would.

Results

The extraction program has been tested with a
2400-transistor circuit on the GALAXY computer, an ELXSI 6400
with 10 CPUs rated at 8 MIPS each. It took 120 minutes of cpu
time to process the list. It was also tested o a
120-transistor circuit, on a 20 Mhz 386 based computer running
DOS, rated at 2.5 mips. The extraction took less than 5 cpu
seconds.

At present, the programs can handle transistors,
inverters, NAND-gates, NOR-gates, clocked inverters, buffers,

multiplexors, exclusive NOR-gates, exclusive OR-gates, and

30

D flip-flops. As more types of components are needed, they
can be easily added.

Components with multiple interchangeable inputs or
outputs cause problems in the logic extraction. Adding a
unique ID to each component can help alleviate the problem for
components with only two or three interchangeable inputs or
outputs. For components with more than three, the problem can
be resolved using recursion, lists, and backtracking -- which

CLIPS does not have in the present version.

31

III. Graphical Display

Introduction

This chapter discusses the second part of the process of
creating a graphical display. It covers how the graphical
representation of the extracted components is achieved. The
sections of the chapter are the tasks to be done, procedures
followed to achieve the graphical display, and problems
encountered. The part on procedures to be followed is broken
into smaller sections described in the tasks section. The
final section of this chapter is a summary of results. A
user's manual on how to use the graphical display is 1in

appendix D.

Tasks

The first part of the problem of creating a graphical
display, representing a circuit symbolically and extracting
higher-order logic gates from a net-list, was discussed in the
previous chapter. The solution to the remaining part of the
preblem, how to graphically represent the extracted
components, is presented in this chapter.

Graphically representing a circuit is the displaying of
the components of a net-list on a graphics device, i.e.,
showing the standard symbol for each extracted component on

a computer screen at the same relative position that it

32

occupies in the circuit. The problem of displaying the
circuit decomposes into five smaller tasks.

The first task is to find the correct relative position
of the extracted components. That task is taken care of
during the extraction routines. The second task is to find
what the maximum and minimum X and y coordinates of the chip
are, so that the graphics display can be correctly scaled.
The third task is to correctly parse the file containing the
extracted components, and to pass the information to the
graphics routines. The fourth task is to initialize =&
graphics surface, allowing input from the user. The fifth and
last task is to draw the components on the screen, labeling

them with the names of their connected nodes.

Finding the Relative Location of Components

The first task, finding the correct relative location for
the extracted components, 1is handled by the extraction
routines. The new x and y coordinates for the extracted
component are the averages of the x and y coordinates of the
lower-order components composing the higher-order gate. This
method was chosen because it was the simplest way to assign
roordinates to a newly extracted component. Figure 9 shows
an extract of the CLIPS code which extracts an inverter and
gives it a new location. The function "bind" binds the value

of the solved expression to a variable (3:34). If there were

33

n lower-order components, then the new x and y locations would

be the sum of the x and y coordinates of the components

divided by n.

(defrule inverter

(or (ptrans ?idl ?gate vdd ?a ?x1 ?vy1l)
(ptrans ?idl ?gate ?a vdd ?x1 ?yl)

(or (ntrans ?id2 ?gate gnd ?a 7x2 ?y2)
(ntrans ?7id2 ?gate ?a gnd ?x2 ?y2)

’p <- (ptrans ?idl $?)

?n <- (ntrans ?7id2 $?)

=>

(bind ?xa (/ (+ ?x1 ?x2) 2))

(bind ?ya (/ (+ 2yl ?y2) 2))

(retract ?p ?n)

(fprintout component "(inv "?gate'" "?a" "?xa"

n?yan) "crlf))

Figure 9. CLIPS Code to Extract Inverter and
Find New x and y Coordinates

It is possible that two extracted components might be
given the same, or overlapping lccations. This problem is

discussed in the problem section.

Finding the Extrema of the Component Coordinates

The next task is finding the maximum and minimum x and
y coordinates of the components. These extrema are needed to
determine the size and shape of the SunCore window when it is
initialized. This task 1s handled by a CLIPS routine

"findext.clp" that is run after the extraction is complete.

34

The code for "findext.clp" is in appendix A.

The algorithm implemented in "findext.clp" finds an x
coordinate, then finds an x coordinate larger than the one
before, checking the whole fact base until the largest x
coordinate is found. The minimum x coordinate is found in the
same manner, as are the largest and smallest y coordinate.
After the largest and smallest x and y coordinates are found,
they are written to the file "scaled.clp", in the form

(range xmin xmax ymin ymax)
where xmin is the minimum x, xmax is the maximum X, ymin is
the minimum y, and ymax is the maximum y. The components are
then written to the file one at a time, converting the x and
y coordinates to integers as they are written. Figure 10 is
an example of this type of file, using the clock generator
circuit described in the next section. The first line is the
maximum and minimum x and y coordinates for this circuit, and

the x and y coordinates have all been changed to integers.

Parsing the CLIPs file

The file that is produced by "find.ext" must be parsed
to pass the values to the graphics routines. This is done by
reading each line into a buffer, stripping off the
parentheses, then using the SSCANF() (5:246) function of C to
separate the different parts of the line and bind the values

to variables. Since the graphics routines are written in C,

35

(range -20587 74850 -10050 6112)
(inv 444 450 14925 =-1050)

(inv 449 443 5175 -900)

(inv 450 424 17025 -675)

(nor2 gen45 329 424 447 20475 -675)
(nor2 gen44 447 453 329 24262 -525)
(inv 424 453 27450 0)

(inv IZ _go 498 1500 -225)

(nand2 gend3 498 450 449 3150 -225)
(inv 53 0Z_pg2 74850 -4425)

(inv 329 277 18600 -8925)

(buffer 277 53 32850 -10050)
(buffer 443 444 8925 -1050)

(buffer 447 533 300 6112)

(buffer 533 0Z pgl -20587 412)

Figure 10. Circuit File with Extrema

a function call with parameter passing is needed to pass the
values to a graphics routine. The code for "drawit.c" which
does the stripping and parsing, as well as the rest of the

graphical display, is in appendix B.

Initializing a Viewing Surface

Finding the correct graphics routine to use on the Suns
was the hardest part of creating a graphical display. Each
routine has its advantages and disadvantages. Overall,
SunCore (6:1-223) is the graphics package that is easiest to
use. SunCore commands are simple, have a direct mapping of
values to x and y moves, and was the easiest to learn in a
short time span.

The limitations of SunCore are that it allows drawing

36

using only lines, polylines, shading, and text (6:53-72).
Polylines are connected continuous lines. It does not have
built-in primitives for curves or circles. Despite this lack,
its graphics commands are the simplest, once a viewing surface
is initialized. A viewing surface must be initialized since
SunView allows multiple windows. The graphics routines need
to be told which surface or window it will be drawing in.

Another problem 1is that without massive programming,
SunCore can only draw in the calling window. This problem
was solved by creating a batch file which creates a new window
of size 900 by 900 in the upper left corner of the Sun's
screen, then calls the graphics routine from this window.
That batch file, "drawgate", is included in appendix B.

Like the graphics program's need to be told where to
draw, the mouse needs to be initialized to the display window
and told where to look for button inputs, and where to show
its icon. Mouse support is needed to allow easy exit from the

graphics display window back to the data input window.

Drawing the Component Symbols

The functions that actually draw the symbols are called
from within Ydrawit.c". When the gate type has been
determined by "drawit.c", a retained segment is opened and the
appropriate function is called with the parameters for node

names and x and y coordinates passed to it.

37

Each type of component that can be created by the
extraction process has a corresponding function which will
draw it on the screen. Depending on the level of extraction,
the symbols are drawn on the screen in different sizes.
Supposing the smallest components are unit size, components
at the next level of extraction are roughly two units by two
units, and the next level roughly four units by four units.
FEach subsequent level of extraction has its symbols roughly
doubled in size. Symbol size, as well as size of the text of
the node names, changes with the level of extraction of the
component. Tigure 11 is a 1list of the symbols so far
implemented, along with their level of extraction, 0 being the
lcwest level. Figure 12 is a screen from the graphics display
showing all the symbols implemented so far, and their relative

sizes.

ntrans
ptrans
inv
tgate
nand?2
norz2
clk_inv
buffer
mux
Xnor
Xor
aff

MNNNONBERRPRRPOO

Figure 11. Size Level of Implemented Symbols

38

shelltool - drant

N ouput
clk Ve g
P
D
——DDFFQ e cutput
P? mput output
(:f k 22 clk1
A\
output cntl
inputl Lot
inputg_MUX-—p

input i
output inpy output Cntz
mput input
4{ _{ |npgi{:::>c>ggtput gctql{>%<]ggte2

Abar

Figure 12. Symbols Implemented by the Display

39

The basic structure of the functions to draw all the
symbols is identical. The code starts with a pair of static
variable structures which hold a list of x moves and y moves.
The function moves to the beginning x and y coordinate, with
an oirset detetmined by the leveir o:r cextraction of the
component being drawn. A polyline is then drawn, using the
data in the pair of structures. Finally, the node names are
added after the character size is set. Additional polylines
are added if the symbol is cannot be drawn with a single
continuous line. Figure 13 is the function to draw a buffer.
It is an example of a function to draw a basic symbol. The
functions to draw the rest of the symbols are located in
appendix B.

A test driver program , "testgate.c", was written to
assist in designing all the symbols, by allowing the display
of each symbol in the same location on the graphics display
by inputting the symbol name. During the design of the
symbols, each one had to be drawn repeatedly. This progranm,
"testgate.c", allowed display of any symbol, without using a
circuit file. The program "testgate.c", and the associated

batch file "drawtest", are located in appendix C.

Problems
As mentioned earlier, two of the problems encountered

were the inability to draw in a separate window, and the lack

40

#include <usercore.h>
#include <string.h>

static float bufferx[) {1000.0, 400.0, -400.0,
-1000.0, 0.0, =400.0,

400.0, 0.0};

statis “lnat hfferyl(] {5¢n.C, 0 0, 0.0 ENG O,

-500, 0.0, 0.0, -500.0};

buffer(x0, y0, gatel, gate2)

float x0, yO;

char #*gatel, *gate2;

{
move_ abs 2(x0+2000.0, y0+500.0);
polyline rel 2(bufferx, buffery, 8):
set_charspace(50.0) ;
set_charsize(160.0, 160.0);
move_rel 2(-210.0*(strlen(gatel})+0.5), 670.0);
text (gatel) ;
move abs 2(x0+3100.0, y0+1170.0);
text (gate2) ;

Figure 13. Function to Draw a Buffer

of built-in primitives to draw curves. Other problems that
occurred were the inability to see program prompts from the
graphics screen, and to reply to them. The most serious
problem, for which no soclution has been implemented, is the
possibility that two or more extracted components have the
same x and y coordinates. A similar problem is how to scale
the symbols correctly so that they will not overlap if the x
and y coordinates of two symbols x are too close to each
other. All the problems, except the last two, were solved in

a workable manner.

41

The inability to draw in a separate window, and the
problem of getting and giving program prompts, are related.
The difficulty is that the program cannot write to the screen
as standard output while the screen is initialized in graphics
ncd2. No nther window nan be written to. either. The problem
was solved by switching the window between graphics and text
mode. After user choices are made, the program switches to
graphics mode, and displays the graphical display until the
right mouse button is pushed while the pointer is in the
graphics window. Once the mouse button is pushed, the window
switches back to text mode to get more user inputs.

The problem of the lack of priwitives to draw curves was
solved by writing a C program "circlept.c'". This program asks
for the number of points, and the radius, then gives the x
moves and y moves to draw a circle of the given radius,
composed of that number of points. The points start and end
on the extreme left side of the circle, since the major use
of the program was to draw the inverter bubbles on the right
side of some of the gates. The code for "circlept.c" is in
appendix B.

The problem of two different extracted components having
the same coordinates is caused by two different factors. The
first factor is the simple method in which the coordinates are
averaged. Since the new coordinates are just the averages of

the old coordinates, duplication of coordinates can occur, if

42

the averages of two different sets of component come out to
be the same. The second factor is the choice of transistors
kept out of duplicate sets. The first transistor encountered
is the one kept, although another transistor might have a
better 1location. Since all 1locations derive from the
locations of the transistors, this is part of the cause of the
problem. The way to solve this problem would be to have the
rule-base system check the coordinates of all other components
before assigning new coordinates to a newly extracted
compecnent. This solution was not implemented due to time
constraints placed on this research, and the increase in
processing time it would cause.

The problem of overlapplng symbols is caused when two
~omponents are too close to each other. This problem is
caused by the same factors that caused the previous problem.
A solution to this problem, which was also not implemented due
time constraints placed on this research, is to allow the
symbols' sizes to be scaled. This solution would not stop
all overlaps, but would stop most.

The problem of overlapping symbols increases with the
decrease in the size of the technology used to design the
circuit, as well as increasing with the number of transistors
used in the circuit. These factors affect the overlaying of

two components exactly the same way.

43

Results

The graphical display of symbols of components was
achieved by using the built-in SunCore graphics routines of
the Sun workstation. Processing time to display the graphics
is negligible, taking under a second. The majority of the
processing time is used to open the Sunview window in which
the graphics are drawn. On a Sun 3/50 monochrome machine, the
creation of the window takes 5 seconds. It takes less time,
3 seconds, to set up the window on the color Sun 3/60 system.
This is due to the fact that the Sun 3/60, with 8 megabytes
of RAM, can continue more processes without swapping memory,
than the Sun 3/50, which has 4 megabytes of RAM. The time
taken to read the CLIPS data file is also negligiilc for the

small circult of 120 transistors tested.

44

IV. Clock Generator Circuit Example

Introduction

A single VLSI design was used to determine the
performance of the logic extraction and the graphical dispiay.
Trough a minimal test, this extraction and display provides
a proof of concept for (a) logic extraction using CLIPS, and
(b) graphical display on a Sun 3 workstation. It also
demonstratcd the need for more capabilities than were designed
into the systemn. Conclusions and recommendations are
discussed in the next chapter.

The circuit that is used as an example is the clock
generator used by CPT Dukes as an example in his thesis
(2:76-78) . One reason this circuit was chosen was because it
consists entirely of inverters, NOR gates, and a NAND gate;
all implemented using Static CMOS design. Therefore no
transistors were left after extraction. The count of only 116
transistors, aund only 42 unique transistors, in the circuit
allowed design and execution of extraction program on a
DOS-based machine with only 640k of memory available to the
program. The low component count of the extracted circuit
made testing the graphical interface simpler. Another reasocn
was that the higher-order logic of the circuit was already
known, and could be used to judge the "correctness" of the

extraction. Figure 14 is a circuit diagram of the clock

45

generator, as designed. The example 1is described in two
sections: The first concerns the extraction; the second, the
graphical display. A summary of the example is included at

the end of the chapter.

n+98
- n449 n443 nl7?7 n444 n450
ndSQ_|
n329
n430

447

"E ns84 [: ns33 : n128 : n0Z_pat
. az77 n233 : ns3 : n0Z_pa2

Figure 14. Circuit Diagram of Clock Generator
(Figure from 2:78)

46

Extraction

The first step of the extraction was the conversion of
the form used by the "cif" file for the clock generator
circuit into the form that CLIPS can read. This conversion
took less than one second on a 20Mhz 386 DOS machine using
the program "sim2clip'". Both the original "sim" file and the
CLIPS file contain 116 transistors. Duplicate transistors
found in these files are removed during the extraction
process. Due to the length of the files, the "sim" file of
the clock generator circuit and the CLIPS file "good.clp" are
included in appendix B, rather than being presented in this
chapter.

The extraction process, using the CLIPS files trl.clp,
tr2.clp and tr3.clp, took less than 5 cpu seconds on Galaxwy,
an ELXSI 6400; less than 5 cpu seconds on a Sun 3/60; and less
than 5 seconds on a 20Mhz 286 DOS machine. Finding the
extreme x and y coordinates took less than a second on all the
machines. Figure 15 is the extracted file of components for
the clock generator circuit.

Comparing the extracted components in figure 15 to the
circuit diagram in figure 14 shows only a few differences.
These differences can all be attributed to the combination of
pairs of inverters into buffers. Logically the components in
the circuit diagram in figure 14, and the components listed

in figure 15 are the same. The extraction process .as done

47

(range -20587 74850 -10050 6112)
(inv 444 450 14925 -1050)

(inv 449 443 5175 -900)

(inv 450 424 17025 -675)

(nor2 gen45 329 424 447 20475 -675)
(nor2 gend4 447 453 329 24262 =~525)
(inv 424 453 27450 0)

(inv IZ go 498 1500 -225)

(nand2 gen43 498 450 449 3150 -225)
(inv 53 OZ pg2 74850 -4425)

(inv 329 277 18600 -8925)

(buffer 277 53 32850 -10050)
(buffer 443 444 8925 -1050)

(buffer 447 533 300 6112)

(buffer 533 0Z pgl =-20587 412)

Figure 15. Extracted Clock Generator Circuit

on the ELXSI, a Sun 3/60, and a 80386 based DOS machine, with

identical results.

Display

The example display of the whole circuit, discussed later
in this chapter, was done on a monochrome Sun 3/50 workstation
with 4 megabytes of RAM. The actual creation of the display
took less than one second. It takes between 4 and 10 seconds
to create the shelltool window in the Sunview windowing
system, however, depending on how many other windows are open
in the environment. This time lag is onlv for the first
display in a session, nct for subsequent displays in the same
session.

This shelltool window is created by running batch file

48

"drawgate", which sets up a shelltool window of known size
and starts the actual drawing program "drawit.c" in the
window. The known size is needed to get correct aspect ratios
for the displayed symbols. Figure 16 is the batch program
"drawgate". The code for "drawit.c", as well as the functions

to draw all the components, are listed in appendix B.

#!/bin/csh ~f]

shelltool -Wp 0 O -Ws 900 900 "drawit"

Figure 16. Batch File to Open Window

After the batch file was run, the name of the file
containing the circuit was asked for, as well as the
coordinates of the window of the part of the circuit to view.

Two different displays of the circuit are included to
show the resolution of the display depending on the portion
of the circuit displayed. The first display, shown in
figure 17, is of the whole circuit. The values entered as the
maximum and minimum values for x and y were the extreme values
found by the extraction routines. This display is shown to
illustrate the limitaticns of viewing the whole circuit at
once.

From figure 17, it is obvious that the details of the
components cannot be discerned when the whole figure is

displayed. A look at the complete circuit does help, however,

49

shelltool - drawit

L, T e o =

Figure 17. Display of Whole Circuit

50

to decide where to zoom for further views. It also shows the

number of components that are in the extracted file, though
without enough resolution to discern their node names, or even
what some of the components are.

The second display, shown in figure 18, is a closeup of
part of the circuit. This display was chosen to illustrate
the legibility and usefulness gained by viewing part of the
circuit. Figure 18 1is a closer look at the part of the
circuit within the x range of 16000 to 30000, and the y range
from -10000 to 8000. This view is of a large enouagh portion
of the circuit to show connections between different
components, yet small enough so that the couponents and their
interconnections are clearly identifiable. This display is
of the type which would be the most useful for an engineer
doing reverse engineering, or original design. Using the
coordinates from MAGIC for part of a circuit, an engineer
could determine what that part of the circuit is. This is the
real power of the graphical interface.

Figure 19 is the session that produced both aforementioned

displays.

Summary
The task of extracting the higher-order logic components
of the clock generator circuit was accurately completed by the

CLIPS extraction routines. The extracted components were

51

shelltoal - drawit

suDOu-r

Figure 18. Close-Up Display of Circuit

52

logically identical to components shown in figure 14. The
graphical display symbolically showed the connections between
the different components, or the relative 1location of
components, depending on the view displayed. The extraction
and display of the clock generator circuit demonstrated that
the extraction routines work, and that the graphical display
program is capable of reading a CLIPS file and displaying it

on a Sun 3/50 or Sun 3/60 workstation.

53

ghalltool - drawit
i rila ccntains the circuit?

z.clp
sordinate limits are as follows:

-2a537
73859

vh3t 5art of the screen do you wish to display?
[F'2ase enter "4min xmax ymin ymax" without qoutes.
-11398 350060 -19000 11890

2201 you like to do another file or view, y orn? y
»3t f1la contains the circuit?

3:3°e3.clp

7.2 Zsordinate limits are as follows:
~min = -28S87

~max = 75858

.m0 : -19858

max< = 11112

brat part of the screen do you wish to display?
Please anter "xmin smax ymin ymax" without qoutes.
13008 36008 -18888@ 3008

¥ould you 1ike to do another file or view, y or n?]

Figure 19. Display Input Session

54

V. Conclusions and Recommendations

Introduction
Tn this chapter, conclusions and recommendations
resulting from this research are presented. Suggested

improvements of the extraction system and graphical display
are discussed and topics for follow-on theses are presented.
A summation of the project is included at the end of this

chapter.

Conclusions

CLIPS, a forward chainer, has advantages and
disadvantages over PROLOG, a backward-chainer. The advantages
include quick implementation of understandable rules and
easily divisible code. Another advantage is the ability of
CLIPs to run identical code on any system that has a C
compiler. Time of execution to extract a circuit seems to be
comparable for both CLIPS and PROLOG. Both took under 10
seconds for the clock generator circuit (2:77). Disadvantages
include the need to work around the lack of back-tracking,
recursion and list-processing; abilities which are inherent
in PROLOG. The addition of these abilities in a later version
of CLIPS would make it a more suitable choice for a project
of this type. The lack of these abilities hinders the

usefulness of CLIPS when dealing with many levels of extracted

55

components. Overall, the use of CLIPS as the language for the
circuit extraction portion of this thesis showed that a
forward-chainer can do a job comparable to PROLOG with the few
aforementioned exceptions, producing a workable circuit
extraction system.

The use of SunCore graphics as the graphics package to
implement the graphical display portion allowed quick
programming of the interface. With the ease of programming
come certain limitations. The inability to produce graphics
in any window other than the current window in SunView
hindered the development of the interface. More time to learn
about SunCore graphics might have revealed a way around this
problem.

The graphical display program, as designed, can display
any number of circuit components if they are in a file of the
proper form. The graphical display program will scale the
size of the components, dependent upon the portion of the
circuit being drawn. As less of the circuit is displayed, the
individual components are drawn larger, and as more of the
circuit is displayed, the components are drawn smaller. This
feature allows both the zooming and panning of the extractea
circuit by the choices of the minimum and maximum x and Yy
coordinates displayed. It also allows precise control over
what portion of the circuit is displayed.

This method of display has some inherent problems. The

56

program will blindly place a cumponent whercver the filc =ays
there 1is one, overlapping or covering previously drawn
components. This problem is minimized by the scaling of the
size of the components. Unfortunately, the extraction routine
can place two or more components into too-close proximity.
Scaling cannot remove all overlaps.

Overall, the graphical display does what it is designed
to do. It displays higher-order logic components that have
been extracted from a net-list, on a Sun 3 workstation, in the
relative posilions ihey occupy on the chip. It allows zooming
and panning, as well as sequential view of different files.
As implemented, the circuit-extraction system and graphical
display can help an engineer design a circuit, or help reverse

engineer an unknown circuit.

Recommendations

The recommendations that follow from this thesis can be
divided into three different portions: improvement of the
extraction routines, improvements to the graphical display,
and extensions to the concept of a graphical interface. All
recommendations would fill deficiencies that have been
discovered during the course of implementation of the
extraction system and graphical display.

During the course of this thesis, the ability for CLIPS

to perform logic extraction has been confirmed. The ability

57

of CLIPS to run identical code on any system that has a C
compiler is a big advantage over other AI languages, such as
PROLOG or LISP, which have limited numbers of platforms, or
lack of compatibility due to different dialects of the
languages running on different platforms. for these reasons,
the use of CLIPS for logic extraction should be explored
further.

Additional 1logic components should be added to the
system, as well as new levels of extraction. Other changes
to the system should also be made to support the other
recommendations to be made.

The graphical display, as mentioned earlier, does what
it was designed to do, though in a less user-friendly manner
than desired. Most of the recommendations to be made
concerning the display revolve around ease of use. These
recommendations fall into the categories of improviang the
mouse support, improving the visual display,and improving the
use of the features of the SunView environment.

Greater use of the mouse would enhance the friendliness
of the system. The ability to use the mouse to pick a window
to zoom into would make the system easier to manage. Another
use of the mouse would be to pan the portion of the circuit
viewed, to create a sliding window effect. These added
features would make the system more of a usable CAD tool.

The visual display could be improved in several ways.

58

Coordinate axes along the sides of the display would help the
precise zooming of view, and location of components. The
addition of connecting lines between connected nodes on
comnonents, instead of just node name labels, would also make
the display simpler to comprehend. Another recommendation is
to make the symbols all scaleable in size, allowing larger
symbols for portions of circuits where individual components
are not as near to one another, and smaller symbols where the
components are niz2arer to one another.

Several features incorporating greater use of the SunView
environment would improve the graphical display. These
include the use of separate command and graphics windows,
pop-up or pull-down menu support, and multiple views of the
same circuit. The use of SunCore inhibits the development of
some of these features. To fully utilize the features
mentioned, the graphical display should be rewritten to
utilize either Sun CGI or Pixwirn graphics.

During the course of the thesis, the limitations of just
showing symbols representing extiracted components in their
relative positions were discovered. Due to sizing problems,
the circuit as a whole cannot be seen without making the
individual symbols too small. An extension to the concept of
a graphical display, which would entail considerable AI
programming as well as graphics programming, would be the

creation of a circuit diagram from the extracted components.

59

This display would show all the components extracted in the
manner of the circuit diagram in chapter IV, figure 18. An
extensions of this magnitude would require four parts. The
first part would be assigning new locations to all the
components, such that none overlap, and components are near
the components to which they are connected. The second part
would be rotating the components to ease the problem of
routing lines between different components. The third part
would be routing the lines. The last part would be creating
a program that can display the diagram, zoom in and out, and
pan easily over the whole circuit. These abilities would be
needed for circuits that have too many components for the
individual components to be recognizable at full view. A
program of this type could be adapted from the graphical
interface created during this thesis.

A thesis implementing the foregoing recommendations would
create a greatly needed CAD tocl. This tool, in conjunction
with the extraction system and graphical display described in
this thesis, would help close the CAD cycle, as well as easing
the task of reverse-engineering circuits for which no circuit

descriptions exist.

Summary
The conclusions presented in this chapter illustrate the

value of the research to the engineering community. The

60

extraction system and graphical display can be used to help
design a new circuit, or reverse-engineer a circuit whose

function is not totally known.

61

Appendix A: Extraction Code

SIM2CLP.C, conversion program from "sim" tc CLIPS.
/********* Thhkhkhkhkhkkkkhkkkkhkhkkhkhkhkhkhkhhkkkhkhkhkkhkhkhhkhhkhkhkhhkhkkhkhkkhkkkik

Date: 8 November 1989
Version: 1.0

*
*
*
* Title: sim2clip Translation Routine

* Filename: sim2clip.c

* Author: Capt Stuart Yarost

* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3, MS-DOS V3.3

* Lanauage: C

* Description:

* This routine takes a transistor net-list

* from an ESIM file produced by MEXTRA, and

* generates a CLIPS formatted description for
* the same file. All Fields are used.

*

*

*

*

*

*

*

*

*

*

*

Passed Variables: None
Returns: None
Files Read: new.sim
Files Written: good.clp
Documentation:
This program is a modification of sim2pro,
written by Capt Mike Dukes for his thesis
(2:127) .
Special Instructions : None
******************7’.**/

#include <stdio.h>
#define max_buf 128
char buffer[max buf]; /* Holds the origional line.*/
char tempbuf[max buf]; /* Holds the converted line.x*/

/* Variables *x/

int iteration, count,count2;
FILE *fd, *od;

main()
{
/* Opens input and output files */

fd=fopen("new.sim","r");
od=fopen("good.clp", "w");

62

/* Clearing the temporary buffer */

for (count=0;count<max_buf;count++)

{
tempbuf[count]=0;

)

/* Get first line, which is thrown away. */

fgets(buffer,max buf, £fd);
while(fgets(buffer,max buf, fd) != NULL)

/* get next line, if it exists */

/* Check for N type transistor */

if(buffer[0]=='e")
{

/* Set variables, then translate the first three
characters in the buffer. */

count=3;
count2=2;
iteration=0;
tempbuf(0}="'(";
tempbuf{1]='n';
tempbuf(2]=' ';

/* Check to insure there are characters left, and
that only 7 fields are translated. */

while((buffer[count2]!=0)&(iteration!=7))
{

/* Check for a vdd, and translate it to a vdd. */

if ((buffer[count2]=='V')&(buffer[count2+l]=='4d')é&
(buffer[count2+2}=='4d"))
{

tempbuf[count++]='v';
tempbuf{count++]='4d"';
tempbuf{count]='4d"';
count2=count2+2;

)
/* Check for a GND, and translate it to a gnd. */

63

else if ((buffer[count2]=='G')&

(buffer(count2+1]}=='N"')}&
(buffer[count2+23j=='D'))

{

tempbuf {count++]='g';

tempbuf{count++}='n"';

tempbuf[count}='d’';

count2=count2+2;

}

/* Check for a blank, and write it. */

else if(buffer[count2]==' ')
{

tempbuf{count]="' ';
iteration++;

}
/* Check for a # and delete it. */

else if(buffer[count2]=="'#")
{

--count;

}

/* Write anything else as is. */

else

{
tempbuf[count]=buffer[count2];

}
count++;
count2++;

}

/* Write the closing ")" and crlf. */

count=count-1;
tempbuf[count++]="')"';
tempbuf[count++]=10;
tempbuf[count]=0;

/* Write the tembuf back to the original buffer,
write it to the output file. */

for (count=0;count<max_buf;count++)

{
buffercount}=tempbuf[count]:

)
fprintf (od,"%s",buffer);

64

then

for (count=0;count<max_buf;count++)
{
tempbuf[count]=0;
}

}

/* Check for P type transistor */

else if (buffer[0]=='p")
{

/* Set variables, then translate the first three
characters in the buffer. */

count=3;
count2=2;
iteration=0;
tempbuf[0]="'(";
tempbuf{l]='p';
tempbuf(2]=' *';

/* Check to insure there are characters left, and
that only 7 fields are translated. */

while((buffer[count2]!=0)&(iteration!=7))
{

/* Check for a vdd, and translate it to a vdd. */

if((buffer[count2]=='V')&(buffer{count2+1]=='4d') &
(buffer{count2+2]=='4"'))
{
tempbuf [count++]='v';
tempbuf [count++]='4d"';
tempbuf{count]='d"';
count2=count2+2;

)
/* Check for a GND, and translate it to a gnd. */

else if ((buffer[count2l=='G')&
(buffer[count2+1]=='N"') &
(buffer[count2+2]=='D"))

{
tempbuf [count++]='qg’';

tempbuf [count++]='n"';
tenpbuf[count]='4d"';
count2=counta2+2;

}

65

/* Check for a blank, and write it. */

else if(buffer[count2}=="' ")
{
tempbuf[count]="' ';
iteration++;

}
/* Check for a # and delete it. */

else if(buffer{count2]=="'4")
{

--count;

)
/* Write anything else as is. */

else
{
tempbuf [count]=buffer[count2];
}

count++;

count2++;

}
/* Write the closing ")" and crlf. */

count=count-1;
tempbuf[count++]="')"';

tempbuf [count++]=10;

tempbuf{count]=0;

/* Write the tembuf back to the original buffer, then
write it to the output file. */

for (count=0;count<max_buf;count++)
{
buffer[count]=tempbuf[count];
)
fprintf (od, "%s",buffer) ;
for (count=0;count<max_buf;count++)
{
tempbuf[count]=0;
)
)
)
/* Close both files */
fclose(£d) ;
fclose(od) :
}

66

TRN.BTT, batch file which runs extraction process.

(load "trl.clp")
(reset)

(run)

(clear)

(load "tr2.clp")
(reset)

(run)

(clear)

(load "tr3.clp")
(reset)

(run)

(exit)

FINDEXT.BTT, batch file which runs findext.clp.

(load "findext.clp")
(reset)

(load-facts "outcomp2.clp")
(load-facts "comprem2.clp")
(run)

(exit)

67

TR1.CLP, first CLIPS file for first level of extraction.

@ @ ¢ 6 0 0 0 0 0 0 000 0c 000000 o0
’llllll"’llllll’ll'll

.CLP written by Capt Stuart Yarost as part of the
requirements for MS in Computer Engineering.

----- . e s s 0 0 L N I R A A A I e o e e 0o 0 e e 00 e 00 0 e
IIIIIIIIIIIIII'IIII'IIIIIII"IIIIIIIIIIIIIIIII'IIIIIIIIIII'

This file adds a unique identifier to every transistor in
good.clp, filters out unnecessary information, then builds
up the following components from the n and p type
transistors:

inverters

tgate

nand (2 input)

nor (2 input)
As it writes these components to the file outcompl.clp, it
retracts its component transistors from the database.
When it is complete, it writes the remaining facts to the
file compreml.clp.

® s 6 0 0 0 % 00 00 0
(A A A A A A NN NN

~e wa
~e
~e
~e
s
~
-
-
-
-
-
~e
-e
-~
-
-
-
-
~e
~e
~e
-a
-
~
~
~-.
~e

~e we w4 o

w8 Ne we Ne ms me we “ws “o

Ne Ns ws Ns Ne we o

~s ws weo

~e “e Ny s wa

; load-facts loads the facts from good.clp.

(defrule load-facts
?1 <- (initial-fact)
=>
(load-facts "good.clp")
(retract ?1i)
{(assert (open-file)))

;; open-file opens outcompl.clp as a write only file.

(defrule open-file
(declare (salience 101))
?i <- (open-file)
=>
{open "outcompl.clp" component "w")
(retract ?1i)
(assert (close-file)))

. .
III’IIIIIIIIII"IIII’IIIIIII"”"’ll’l”’ll’lll'llllllllll’l

;; add-id-n adds a unique identifier to each n type

;: transistor, if a similiar n type transistor has not already
;: been asserted, with the same gate, and same source and

;7 drain.

(defrule add-id-n
(declare (salience 101))
?n <~ (n ?gate ?drain ?source ? ? ?x ?y)
(not (ntrans ? ?gate ?drain ?source ? ?))

68

(not (ntrans ? ?gate ?source ?drain ? ?))

(retract ?n)

(assert (ntrans =(gensym) ?gate ?drain ?source ?x ?y)))
id-n deletes a n type transistor it h
asserted, with the same gate, source and dra1 .

s e s o 0 . o .
r 1 rs rrz ’

e s
=
o~
D~

~e wo wo
~e wo we

(defrule del-id-n
(declare (salience 101))
?n <- (n 2gate ?drain 7?source ? ? ?
(or (ntrans ? ?gate ?drain ?source
(ntrans ? ?gate ?source ?drain

[AVIEIVE. 4
)))

(retract ?n))

. . . e @ o 0 0 s 6 000 00000 . o . @ 8 © ® s 08 8 0 0 0 e % e 00 0 0 s s
r 1 f e r 7 707t 70 g rr L rtrrrrrrr o r ot

; add-id-p adds a unique identifier to each p type
; transistor, if a similiar p type transistor has not already

VD ~e
(e
e e

been asserted, with the same gate, and same source and
drain.

~e e w4 we wg

(defrule add-id-p
(declare (salience 101))
?p <- (p ?gate ?drain 7?source ? ? ?x ?
(not (ptrans ? ?gate ?drain ?source
(not (ptrans ? ?gate ?source ?drain

RNV
e e
s

N

(retract ?p)
(assert (ptrans =(gensym) ?gate ?drain ?source ?x ?y)))

HE A A A A A A A A I B A A A A A B I A A A B A B I B A B I A I A A R A
;; del-id-n deletes a n type transistor if it has already been
;; asserted, with the same gate, source and drain.

(defrule del-id-p
(declare (salience 101))
?p <- (p ?gate ?drain ?source ? ? ?x
(or (ptrans ? ?gate ?drain ?source
(ptrans ? ?gate ?source ?drain

W)

~— kG
~—

) D

=>
(retract ?p))

L R S I e s ® e e 00 v 0 s 0
t o sy rrr Lt rrrroes

H N H A rii;
er writes an inverter, averaging the positions,
ts the component transistors from the fact base.

o e
1’

~e

. L)
r rs

~e

pie v
: -~

A
vert
etrac

e we we
~e ws o

(defrule inverter
(or (ptrans ?idl ?gate vdd ?a ?x1 ?yl)

69

(ptrans ?idl ?gate ?a vdd ?x1 ?yl))
(or (ntrans ?id2 ?gate gnd ?a ?x2 ?y2)
(ntrans ?id2 ?gate ?a gnd ?x2 ?y2))
?p <- (ptrans ?idl $?)
?n <- (ntrans ?id2 $7?)
=>
(bind ?xa (/ (+ ?x1 ?x2) 2))
(bind ?ya (/ (+ 2?2yl ?y2) 2))
(retract ?p ?n)
(fprintout component " (inv "?gate" "?a’ "?xa" "?ya’”)"crlf))

..
AN AN AR A AN A A AR A A e R A N A A

;7 tgate writes a tgate, averaging the positions, and retracts
;; the component transistors from the fact base.

(defrule tgate
(or (ptrans ?idl ?gate ?a ?b ?x1 ?yl)
(ptrans ?idl ?gate ?b ?a ?x1 ?yl))
(or (ntrans ?id2 ?h ?a ?b ?x2 ?y2)
(ntrans ?id2 ?h ?b ?a ?x2 ?y2))
?p <- (ptrans ?7idl $7?)
?n <- (ntrans ?id2 $7?)

(bind ?xa (/ (+ ?x1 ?2x2) 2))

(bind ?ya (/ (+ ?yl ?y2) 2))

(bind ?place (gensym))

(retract ?p ?n)

(fprintout component '"(tgate "?place" "?gate" "?h" "?3)
(fprintout component " "?b" "?xa" "?a")'crlf))

..
(A A AR A A A AR NN N NN

;; nand2 writes a nandgate, averaging the positions, and
;7 retracts the component transistors from the fact base.

(defrule nand2

(or (ptrans ?idl ?a vdd 2o ?x1 ?y1l)
(ptrans ?idl ?a 7o vdd ?x1 ?yl))

(or (ntrans ?id2 ?a ?x gnd ?x2 ?y2)
(ntrans ?id2 ?a gnd ?x ?x2 ?y2))

(or (ptrans ?id3 ?b vdd 20 ?x3 ?y3)
(ptrans ?id3 ?b 20 vdd ?x3 ?y3))

(or (ntrans ?id4 ?b ?x 20 ?x4 ?y4)
(ntrans ?2id4 ?b 7o ?x ?x4 ?y4))

?pl <- (ptrans ?idl $?)

?nl <- (ntrans ?id2 $?)

?p2 <- (ptrans ?1id3 $?)

?n2 <- (ntrans ?id4 $7?)

(test (neq ?7id1l ?7id3))

(test (neq ?id2 ?id4))

(test (neqg gnd ?0))

70

(test (neq vdd ?0))
(test (neq ?x ?0))
=>
(bind ?xa (/ (+ ?x1 ?x2 ?x3 ?x4) 4))
(bind ?ya (/ (+ 2yl ?y2 ?y3 ?y4) 4))
(bind ?place (gensym))
(retract ?pl ?nl ?p2 ?n2)
(fprintout component " (nand2 "?place" "?a" "?b" "?0)
(fprintout component " "?xa" "?ya")'"crlf))

..
A A A A A R e A A A A A A AN A

;: nor2 writes a norgate, averaging the positions, and
;: retracts the component transistors from the fact base.

(defrule nor2

(or (ptrans ?idl ?a vdd ?x ?x1 ?yl)
(ptrans ?idl ?a ?x vdd ?x1 ?7yl))

(or (ntrans ?id2 ?a 7o gnd ?x2 ?y2)
(ntrans ?id2 ?a gnd ?o0 ?x2 ?y2))

(or (ptrans ?id3 ?b ?x 20 ?x3 ?y3)
(ptrans 2id3 ?b 20 ?x ?x3 ?y3))

(or (ntrans ?id4 ?b gnd 2o ?x4 7?7y4)
(ntrans ?id4 ?b ?o0 gnd ?x4 ?7y4))

?pl <- (ptrans ?idl $7?)

?nl <- (ntrans ?id2 $7?)

?p2 <- (ptrans ?2id3 $?)

?n2 <- (ntrans ?id4 37?)

(test (neq ?2id1l ?id3))

(test (neq ?id2 ?7id4))

(test (neq gnd ?0))

(test (neq vdd ?o0))

(test (neq ?x ?0))

(bind ?xa (/ {(+ ?x1 ?x2 ?x3 ?x4) 4))

(bind ?ya (/ (+ 2yl ?y2 ?2y3 ?y4) 4))

(bind ?place (gensym))

(retract ?pl ?nl ?p2 ?n2)

(fprintout component " (nor2 "?place" "?a" "?b" "7?0)
(fprintout component " "?xa" "?ya")'"crlf))

--

A A A A A A A A AN RN

;; close file closes outcompl.clp, then saves the remaining
;; facts to the file compreml.clp.
(defrule close-file
(declare (salience =-99))
?i <= (close-file)
=>
(retract ?1i)
(save-facts "compreml.clp")
(close component))

71

TR2.CLP, second CLIPS file for first level of extraction.

. . ® s s 6 e o8 00 0000 * o
rroror ot rorr o r LIS

TR2.CLP written by Capt Stuart

e e o 0 5 8 s 0 s 0 s . e
terr rr o rr

Yarost as part of
requirements for MS in Computer Engineering.

.
[4

; This file loads the facts from compreml.clp, then builds
; up the following components from the n and p type

; transistors:

H clocked-inverter

; As it writes these components to the file outcompl.clp, it
; retracts its component transistors from the database. When
; it is complete, it writes the remaining facts to the file
; compreml.clp.

e s ws N mE s we we “e ws we we

. »
r L r ettt

ri HiH
from compreml.clp.

.
’

; load-facts loads the facts

~e -

(defrule load-facts
?i <~ (initial-fact)
=>
(load-facts "compreml.clp")
(retract ?2i)
(assert (open-file)))

------------------------------ L I I R R R I R O . T I R I A]
AN AR AN AN A AN AN A RN

;; open-file opens outcompl.clp as a append only file.

(defrule open-file
(declare (salience 101))
?1 <- (open-file)
=>
(open "outcompl.clp" component "a")
(retract ?21i)
(assert (close-file)))

HE A A S IR A A R A A A B B S A A A A A A B S SR A A A A A A A A
;; clk _inv writes an clocked-inverter, averaging the

;; positions, and retracts the component transistors from the
r

fact base.

(defrule clk_inv

(or (ptrans ?idl ?pl ?x ?drain ?x1 ?yl)
(ptrans ?idl ?pl ?drain ?x ?x1 ?yl))

(or (ntrans ?id2 ?gate gnd ?y ?x2 ?y2)
(ntrans ?2id2 ?gate ?y gnd ?x2 ?y2))

(or (ptrans ?id3 ?gate ?x vdd ?x3 ?y3)
(ptrans ?id3 ?gate vdd ?x ?x3 ?y3))

(or (ntrans ?id4 ?p2 ?y ?drain ?x4 ?y4)
(ntrans ?id4 ?p2 ?drain ?y ?x4 ?7y4))

?ptl <- (ptrans ?idl $?)

72

?ntl <- (ntians ?2id2 $?)
?pt2 <- (ptrans ?id3 $?)
?nt2 <- (ntrans ?id4 $7?)
(test (neq ?7idl ?id3))
(test (neq ?id2 ?7id4))
=>
(bind ?xa (/ (+ ?x1 ?x2 ?x3 ?x4) 4))
(bind ?ya (/ (+ 2yl 2y2 ?y3 ?y4) 4))
(retract ?ptl ?ntl ?pt2 ?nt2)
(fprintout component " (clk_inv "?pl" "?p2" "?gate" "?drain)
(fprintout component " "?xa" "?ya")"crlf))

...
[A A N A A A A e A A A A A A A A A A A A e A A A A A

;; close file closes outcompl.clp, then saves the remaining
;; facts to the file compreml.clp.

(defrule close-file
(declare (salience -99))
?1 <= (close-file)
=>
(retract ?1i)
(save-facts "compreml.clp")
(close component))

73

TR3.CLP, first CLIPS file for second level of extraction.

--

II’llllIIIIIII""'l"Illl’Il'lllIIIIllIIIIII'IIIIIIIIIIIII”I

;7 TR3.CLP written by Capt Stuart Yarost as part of the
;7 requirements for MS in Computer Engineering.

--

IIIIIIIIIIIIIIIIIIlIIIIIIIIIIllIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
;7 This file builds up the following components from the n and
7 p type transistors as well as lower order logic gates:

HH buffer

b mux

H xnor (2 input)

HH xor (2 input)

H d-flipflop
; As it writes these components to the file outcomp2.clp, it
;7 retracts its component transistors from the database. When
; 1t is complete, it writes the remaining facts to the file
;; comprem2.clp.

[N A AN A A AN AN A AN AN AN AN A A A A A A A A A A A A A A A A A AR A A A A e A A A

;7 load-facts loads the facts from otcompl.clp and
;7 compreml.clp.

(defrule load-facts
?i <= (initial-fact)

=>
(load-facts "outcompl.clp")
(load-facts "compreml.clp")
(retract 71i)
(assert (open-file)))

..

A A A A AN e R R e

;; open-file opens outcomp2.clp as a write only file.

(defrule open-file
(declare (salience 101))
?1 <- (open-file)
=>
(open "outcomp2.clp" component "w")
(retract ?1)
(assert (close-file)))

--

A AN RN

;7 buffer writes a buffer, averaging the positions, and
;; retracts the ;; component lower level logic gates from the
;+ fact base.

(defrule buffer
?invl <- (inv ?a ?b ?x1 ?yl)
?2inv2 <- (inv ?b ?c ?x2 ?y2)
(not (~inv ?b $7))
(not (~inv ? ?b $?))

74

(not (~inv ? ? ?b $7?))
(not (~inv ? 2?2 2?2 ?b $7?))
(not (~inv 2 2?2 2 2 ?b $7))
=>
(bind ?xa (/ (+ ?x1 ?x2) 2))
(bind 2?ya (/ (+ ?yl ?y2) 2V)
(retract °1nvl ?inv2)
(fprintout component " (buffer "?a" "?c" "?xa' "?ya")"crlf))

lIlll’l"llllIII’I"llIIllIIIllIIl'lIIIIIIII’IIIIIIIIIIIIII"I

;7 mux writes a mux, averaging the positions, and retracts the
;7 component lower level logic gates from the fact base.

(defrule mux
(or (tgate ?idl ?g ?h ?a ?c ?x1 ?yl)
(tgate ?idl ?g ?h ?c ?a ?x1 ?yl))
(or (tgate ?id2 ?h ?g ?c ?b ?x2 ?y2)
(tgate ?2id2 ?h ?2g ?b ?c ?x2 ?y2))
(test (neq ?1idl ?2id2))
?2t1 <- (tgate ?id1 $7?)
?t2 <- {(tgate ?id2 $?)
=>
(bind ?xa (/ (+ ?x1 ?x2) 2))
(bind ?vya (/ (+ 2?2yl ?2y2) 2))
(retract 7tl1 ?7t2)
(fprintout component " {(mux "?id1l" "?2g" "?h'" "2a" "?p" "?c)
(fprintout component " "?xa" "?ya")'"crilf))

--

A A A A AR e

;7 Xnor writes a xnor, averaging the positions, and retracts
;: the component lower level logic gates from the fact base.

(defrule xnor
?invl <- (inv ?a ?an ?x1 ?y1l)
?2inv2 <~ (inv ?b ?bn ?x2 ?y2)
(or (tgate ?2idl ?b ?bn ?an ?xor ?x3 *y3)
(tgate ?idl ?b ?bn ?xor ?an ?x3 7y3))
(or (tgate ?id2 ?bn ?b ?a ?xor ?xi ?y4)
(tgate ?721id2 ?bn ?b ?xor ?a ?x4 ?y4))
?tgl <- (tgate 7idl $7?)
?2tg2 <- (tgate ?7id2 $7?)
(test (neq ?a ?b))
=>
{(bind ?¥a (/ (+ ?x1 ?x2 ?x3 7x4) 4))
(bind ?ya (/ (+ 2?yi 2y2 ?y3 2y4) 4))
(bind ?place (gensym))
(retract Zinvl ?2inv2 ?tgl ?tg2)
(fprintout comporent " (xnor "Z?place" "?Za" "?an" "?b" "?bn)
(fprintcut component " "?xor'" "?xa" "?ya")"crlf))

--

’II’IIII""IIIIlIII’lIII'II"l”’IIIIIII’IIIIIIIIII’III'III

;; Xor writes a xor, averaging the positions, and retracts the
; component lower level logic gates from the fact base.

(defrule xor

?invl <- (inv ?a ?an 7x1 ?y1l)

?2inv2 <- (inv ?b ?bn ?x2 ?y2)

(or (tgete ?idl ?b ?bn ?an ?xor ?x3 ?y3)
(tgate ?idl ?b ?bn ?xor ?an ?x3 ?y3))

(or (tgate ?id2 ?b ?bn ?a ?xor ?7x4 ?y4)
(tgate 7id2 ?b ?bn ?xor ?a ?x4 ?y4))

?tgl <~ (tgate ?idl $7?)

?tg2 <~ (tgate ?id2 $7?)

(test (neq ?a ?b))

(bind ?xa (/ (+ ?x1 ?x2 ?x3 ?x4) 4))

(bind ?ya (/ (+ 2yl ?y2 ?y3 ?2y4) 4))

(bind ?place (gensym))

(retract ?invi ?inv2 7tgl ?7tg2)

(fprintout component " (xor "?place" "?a"™ "?an" "?b" "?bn)
(fprintout compcenent " "?xor" "?xa" "?ya')'"crlf))

--

IIII'IIIlIlIIIIlIIIIIIIIIIIIIIIIII"IIIIIII’Illlll’l’llll’llll

;; dff writes a d-type flipflop, averaginrg the positions, and
;; retracts the component lower level logic gates from the
:; fact base.

(defrule dff

(or (tgate ?idl ?pl ?p2 ?2d ?x ?x1 ?yl)
(tgate ?2idl ?pl ?p2 ?x 2d 7x1 ?2yl))

?2ci <~ (clk_inv ?p2 ?pl ?g ?x ?x2 ?y2)
?2inv <- (inv ?x ?2g ?x3 ?y3)
?tg <- (tgate ?7id1l $?)

=>
(bind ?xa (/ (+ ?x1 ?x2 ?x3) 3))
(bind ?ya {(/ (+ 2yl ?y2 ?y3) 3))
(retract ?ci ?inv 7tqg)
(fprintout component "(dff "?pl" "?p2" "?d" "?qg)
(fprintout component " "?xa" "rya")'"crlf))

..
[AN A N A A e N A e

;; close file closes outcomp2.clp, then saves the remalning
;; facts to the file comprem2.clp.

lefrule close-file

(declare (salience -99))

7?1 <~ (close-file)

(retract 71i)

(save-facts "comprem2.clp")
(close component))

FINDEXT.CLP, CLIPS file to find extreme x and y values.

A A A I R A I A A A B A B A B A R I S A A A A S A A A A
;; FINDEXT.CLP written by Capt Stuart Yarost as part of the
;7 requirements for MS in Computer Engineering.
i:’:,777777?7?7:?77?77777,77??57;.,,7;?7;,7;7;7777777??77777?7:
;; This file finds the maximum and minimum x and y

;3 coordinates, then inserts them as the first fact in the
;7 file of components.

A S A S A A A B A A B A A I A B I I B A A B A A A A A A A A A
;: open-file opens as write only, the file scaled.clp.

{defrule open-file
(declare (salience 101))
?1 <- (initial-fact)
=>
(open "scaled.clp" component "w")
(retract ?i)
(assert (tist limits))
(assert (close-file)))

...
"flIIIIIIIIIIIlllllllll’/l"lflllllll!IIIIIIIIIIII'II””I'I'

;7 first-big-x asserts a number as the largest x.

(defrule first-big-x
(declare (salience 100))
($?most ?x-val ?y-val)
(not (big-x ?))

(test (numberp ?x-val))
(test (numberp ?y-val))

{assert (big-x ?x-val)))

..
AR A AR RN

;7 big-x finds the largest x and asserts that fact

(defrule big-x
(declare (salience 100))
?x1 <- (big-x ?x)
($?most ?x-val ?y-val)
(test (numberp 7x-val))
(test (numberp 7?7y -val))
(test (> ?x-val ?x))

=>
(retract ?x1)
(assert (big-x ?x-val)))

77

----------------------- e e o
IlII"IIIIIIIIIIIIIIIIIIIII’I

M H
;; first-small-x asserts a number

a8 6 0 0 0 e 00 0 0 s
rrrf ot rrrrtr g

the smallest x.

as
(defrule first-small-x

(declare (salience 100))

($?most ?x-val ?y-val)

(not (small-x 7))}

(test (numberp ?x-val))

(test (numberp ?y-val))

(assert (small-x ?x-val)))

..

IIIIlllllII’lIIlIIll’lIIIIIIII'III'II’III’IIIIIIIIIIIIIIIIIIII

;; small-x finds the smallest x and asserts that fact

(defrule small-x
(declare (salience 100))
?x1 <= (small-x ?x)
($?most ?x-val ?y-val)
(test (numberp ?x-val))
(test (numberp ?y-val))
(test (< ?x-val ?x))

(retract ?x1)
(assert (small-x ?x-val)))

...
IIIIIIIIIIIIIIII!IIII’II'III’IIIIIIII’I’IIIIIIII.'IIIIIIlIlIlII

;; first-big-y asserts a number as the biggest vy.

(defrule first-big-y
(declare (cfalience 100))
($?most ?x-val ?y-val)
(not (big-v ?))

(test (numberp ?x-val))
(test (numberp ?y-val))

...

lII"’”I'Il7’IIlII’I’IIIII’Il'l’"”IIIIIIII'IIIIII'IIIIl’lll

;: big-y finds the biggest y and asserts that fact

(defrule big-y
(declare (salience 100))
?yl <~ (big-y ?y)
($?most ?x-val ?y-val)
(test (numberp ?x-val))
(test (numberp ?y-val))
(test (> ?y-val ?y))
(retract ?y1l)
(assert (big-y Zy-val)))

78

..

AN NN AN

;7 first-small-y asserts a number as the smallest y.
(defrule first-small-y

(declare (salience 100))

($?most ?x-val ?y-val)

(not (small-y ?))

(test (numberp ?x-val))

(test (numberp ?y-val))

(assert (small-y ?y-val)))

--
AN AN AN AN A A A A A R N NN

;; small-y finds the smallest y and asserts that fact

(defrule small-y
(declare (salience 100))
?yl <- (small-y ?y)
($?most ?x-val ?y-val)
(test (numberp ?x-val))
(test (numberp ?y-val))
(test (< ?y-val ?y))

(retract ?yl)
(assert (small-y ?y-val)))

[A A A A A A A A A A A A A A A A A A N A A A A A A A A A A A A A A B e A A e

;; Asserts a fact of the largest new x and y values.

(defrule assert-limits
(declare (salience 50))
?21f <- (list limits)
(big-x ?big-x)
(small-x ?small-x)
(big-y ?big-y)
(small-y ?small-y)
=>
(bind 7?smallx (trunc ?small-x))
(bind ?bigx (trunc ?big-x'!
(bind ?smally (trunc 7« ~Y))
(bind ?bigy (trunc 2L_.5 _))
(retract ?1f)
(fprint~ut component "(range "?smallv" "?higx" "?smally)
(fprintout component " "?bigy")'"crlf))

79

..............
IIIIIIII'IIIIIIII”IIII”l"”l’l’l"l’l’l’lIIIIIIIIIIIII'III

; write-all writes the rest of the components into the file
; scaled.clp after the range information.

(defrule write-all

?comp <- ($?most ?x-val ?y-val)

(test (numberp ?x-val))

(test (numberp ?y-valy})

=>
(retract ?comp)
(fprintout component " ("$?most" "(trunc ?x-val))
(fprintout component " "(trunc ?y-val)")'"crlf))

t trrrrore

.................
IlIIIIIIIIIIII'III”I”lIIIIIIIIIIIIII"IIIIIII'III"I

;; close-file closes the file scaled.clp

(defrule close-file
(declare (salience -99))
?i <= (close-file)

=>
(retract ?1i)

(close component))

80

Appendix B: Graphical Display Code

DRAWGATE, batch program to run "drawit".

#!/bin/csh -f
shelltool -Wp 0 0 -Ws 900 900 "drawit"

DRAWIT.C, program to display extracted circuit.

/**

* ok Ok %k % Ok % R % ok % % % % % O ¥ F % % %k ¥ F % * *

*

Date: 8 November 1989
Version: 1.0

Title: Graphical Display Routine

Filename: drawit.c

Author: Capt Stuart Yarost

Project: Extraction System and Graphical Display

Operating System: Unix V4.3

Language: C

Description:

This routine takes a component net-list
produced by the extraction routines, and
displays graphically the circuit.

Passed Variables: Component type, node names,

x and y coordinates.

Returns: None

Files Read: xxx.clp, where xxx 1is the filename of an

output file from the extraction process.

Hardware Input: Right mouse button.

Modules Called: buffer.c clk_inv.c dff.c inv.c mux.c
nand2.c nor2.c ntrans.c ptrans.c
tgate.c xnor.c xor.c

Files Written: none

Special Instructions : Must be run in the SunView

environment.
Run batch file "drawgate" to
start the program.

**/
#include <stdio.h>

#include <string.h>

#include <usercore.h>

#define max_buf 128

#tdefine minview(n) (0.
#define maxview(n) (0

FILE *fd;
char fname[14};
char buff{max buf]:

81

char tempbuf([max buf];

char gatetype[20], gatel[20], gate2[20], gate3[20],
gate4[20]), gate5[20]), gate6[20],
junk[20], another([2];

int xpos, ypos, count, count2, butt, xmax, xmin, ymax, ymin;

int pixwindd() ;

float xrange, yrange, xperc, yperc;

struct vwsurf vsurf = DEFAULT_VWSURF (pixwindd) ;

struct vwsurf vsurf2 = DEFAULT_ VWSURF(pixwindd) ;

main()
{
another[0] = 'y';
while (another[0] == 'y')
{
do

{

printf("What file contains the circuit?\n"};
scanf ("%s", fname);
fd=fopen(fname,"r");
} while (£fd==NULL);
fgets (buff,max_buf, fd)
count2 =1;
count = 1;
while(buff{count]l!="')")
{
tempbuf[count-1] = buff[count];
count++;
)
tempbuf{count-1]=' *';
tempbuf[count]=10;
tempbuf[count+1]=0;
sscanf (tempbuf, "%s %d %d %d %d", gatetype, &xmin,
&xmax, &ymin, &ymax);
printf ("The coordinate limits are as follows:\n");
printf ("xmin %d\n",xmin) ;
printf ("xmax %d\n", xmax+5000) ;
printf ("ymin %d\n",ymin) ;
printf ("ymax Zd\n\n",ymax+5000) ;
printf ("What part of the screen");
printf (" do you wish to display?\n");:
printf("Please enter \"xmin xmax ymin ymax\"):
printf(" without goutes.\n"):
scanf ("%d %d %4 %d", &xmin, &xmax, &ymin, &ymax);
Xrange = xmax - Xmin;
yrange = ymax - ymin;
if (xrange > yrange)
{
xperc = 1;
yperc = yrange / xrande;

82

}

else
{
yperc = 1;
Xperc = Xrange / yrange;
}
vsurf = vsurf2;
initialize core(DYNAMICB, NOINPUT, TWOD) ;
initialize view_surface(&vsurf, FALSE):;
select_view_surface(&vsurf) ;
set_ndc_space_2(1.0, 1.0);
set_viewport 2 (minview(xperc), maxview(xperc),
minview(yperc), maxview(yperc)):
set_window((float)xmin, (float)xmax, (float)ymir=,
(float)ymax) ;
set _output _clipping(TRUE) ;
set_window_clipping(FALSE) ;
create_retained_segment (count2):;
move_abs_2((float)xmin, (float)ymin);
line rel 2(xrange, 0.0);
line rel 2(0.0, yrange):;
line_rel 2(-1.0*(xrange), 0);
line_rel 2(0.0, -1.0*(yrange));
close retained_segment() ;
count2++;
initialize_device (BUTTON, 3);
initialize_ device(LOCATOR, 1):
set echo surface(LOCATOR, 1, &vsurf);
set_echo_surface (BUTTON, 3, &vsurf);
set echo(LOCATOR, 1, 1):

set charprecision(CHARACTER) ;
set text index(1);

while(fgets(buff,max_buf, fd) != NULL)
{

count = 1;

count2++;

while(buff(count]!="')")
{
tempbuf[count-1] = buff[count];
count++;

}
tempbuf{count-1]="' ';
tempbur [count]}=10;
tempbuf[count+1]=0;

sscanf (tempbuf, "%s", gatetype):

83

if (!(strcmp(gatetype, "ntrans")))

{
sscanf (tempbuf, "%s %s %s %s %s %d %d", gatetype,

junk, gatel, gate2, gate3, &xpos, &ypos);
set_image transformation_type (NONE) ;
create_retained_segmer t (count2) ;
ntrans((float) xpos, (float) ypos, gatel, gate2,
gate3) ;
close_retained_segment () ;

)

else if (! (strcmp(gatetype, "ptrans")))
{

sacanf (tempbuf, "%s %s %s %s %s %d %d", gatetype,
junk, gatel, gate2, gate3, &upos, &ypos):;

set image transformation type(NONE):;

create retained_segment(.ount2):

ptrons{((float) xpos, (float) ypos, gatel, gate2,
gate3);

close_retained_segment() ;

}

else if (! (strcmp(gatetype, "inv")))
{
sscanf (tempbuf, "%s %s %s %d %d", gatetype,

gatel, gate2, &xpos, &ypos):;

set_image_transformation_type (NONE) ;
create retained_segment (count2);
inv((float) xpos, (float) ypos, gatel, gate2);
close_retained_segment() ;

)

else if (:(strcmp(gatetype, "tgate")))

{

sscanf (tempbuf, "%s %s %s %s %s %s %d %4d",
gatetype, junk, gatel, gate2, gate3,
gated, &xpos, &ypos);

set image transformation_type (NONE) ;

create retained_segment (count2) ;

tgate((float) xpos, (float) ypos, gatel, gateZ,
gate3, gated):

close retained_segment():

}

else if (! (strcmp(gatetype, "nand2")))

{
sscanf (tempbuf, "%s %s %s %s %s %d %4" atetype,
’ 7

junk, gatel, gate2, gate3, &xpos, &ypos):;
set image transformation_type(NONE) ;
create retained_segment(count2);

84

nand2 ((float) xpos, (float) ypos, gatel, gate2,
gate3l):
close_retained_segment () ;

}

else if (! (strcmp(gatetype, '"nor2")))
{

sscanf (tempbuf, "%s %s %s %s %s %d %d", gatetype,
junk, gatel, gate2, gate3, &xpos, &ypos) ;

set image_transformation_type (NONE) ;

create_retained_segment (count2);

nor2 ((float) xpos, (float) ypos, gatel, gateZ2,
gate3d);

close retained_segment () ;

}

else if (! (strcmp(gatetype, "clk_inv")))
{

sscanf (tempbuf, "%$s %s %s %s %s %d %d", gatetype,
gatel, gate2, gate3, gate4, &xpos, &ypos);

set image_transformation_type (NOKNE);

create retained_segment(count2) ;

clk_inv((float) xpos, (float) ypos, gatel, gate2,

gate3d, gated):

close retained_segment ()’
)

else if (! (strcmp(gatetype, "buffer")))

{
sscanf (tempbuf, "%s %s %s %d %d", gatetype,

gatel, gate2, &xpos, &ypos);
set image_transformation_type (NONE) ;
create_ retained_segment(count2);
buffer((float) xpos, (float) ypos, gatel, gate2):
close_retained_segment ()

}
else if (! (strcmp(gatetype, "mux")))

sscanf (tempbuf, "$%s %s %s %s %s %s %s %d 24",
gatetype, junk, gatel, gate2, gate3,
gate4, gate5, &xpos, &ypos):

set image_transformation_type (NONE) ;

create retained_segment (count2):;

mux((float) xpos, (float) ypos, gatel, gateZzZ,

gate3, gate4, gate5);

close retained_segment();

}
else if (! (strcmp(gatetype, "xnor")))

85

{

sscanf (tempbuf, "%s %s %s %s %s %s %s %d %d",
gatetype, junk, gatel, gate2, gate3s,
gated, gateb5, &xpos, &ypos):

set_image_transformation_type (NONE) ;

create_retained_segment(count2);

xnor((float) xpos, (float) vpos, gatel, gate2,
gate3, gate4, gateb);

close retained _segment() ;

}

else if (! (strcmp(gatetype, "xor")))
{

sscanf (tempbuf, "%s %s %s %s %s %s %s %d %d4",
gatetype, junk, gatel, gate2, gate3,
gate4, gateb, &xpos, &ypos):

set _image_ transformation_type(NONE) ;

create retained_segment (count2});

xor{((float) xpos, (float) ypos, gatel, gate2,

gate3, gate4, gateb);
close_retained _segment();

}

else if (! (strcmp(gatetype, "dff")))
{
sscanf (tempbuf, "%s %s %s %s %s %d %d", gatetype,
gatel, gate2, gate3, gated4, &xpos, &ypo):
set _image_transformation_type (NONE) ;
create_retained_segment(count?):
dff((float) xpos, (float) ypos, Jgatel, gate2,
gate3, gated);
close retained_segment();
}
}

fclose(£d) ;

butt = 0;
while (butt == 0) await_any_button(1l, &butt):

terminate device(BUTTON, 3) ;
terainate_device (LOCATOR, 1)
deselect view_surface(&vsurf);
terminate core():

printf ("\n\nWould you like to do another file or"):
printf (" view, y or n? “);

scanf("%1s", another):

)

86

BUFFER.C, function to display buffer.
/**
* Date: 8 November 1989
* Title: Graphical Display Routine
* Filename: buffer.c
* Author: Capt Stuart Yarost
* Project: Extraction System and Graphical Display
* Operating System: Unix V4.3
* Language: C
* Description: This function displays a buffer.

* Passed Variables: Component type, node names,

* x and y coordinates.

*
*

Calling Modules: Drawit.c
*******************i***************************************/

#include <usercore.h>
#include <string.h>

static float bufferx[]

l

{1000.0, 400.0, -400.0, -1000.0,
0.0, -400.0, 400.0, 0.0};

static float buffery[]

Il

{500.0, 0.0, 0.0, 500.0, -500,
0.0, 0.0, -500.0};

buffer(x0, y0, gatel, gate2)

float x0, yO:

char *gatel, #*gate2;

{
move_abs 2 (x0+2000.0, y0+500.0);
polyline rel 2(bufferx, buffery, 8):
set_charspace(50.0} ;
set char ize(1606.0, 160.0);
move .- _2(-210.0*(strlen(gatel)+0.5), 670.0);
text (gatel) ;
move_ abs 2(x0+3100.0, y0+1170.0);
text (gate2);

87

CLK_INV.C, function to display a clocked inverter.

/**

Date: 8 November 1989
Title: Graphical Display Routine
Filename: clk _inv.c
Author: Capt Stuart Yarost
Project: Extraction System and Graphical Display
Operating System: Unix V4.3
Language: C
Description: This function displays a clocked

inverter.
Passed Variables: Component type, node names,

x and y coordinates.

* Calling Modules: Drawit.c
**/
#include <usercore.h>
#include <string.h>
static float cinvx[)

* % X % % % X X X X *

(500.0, 29.3, 70.7, 70.7, 29.3, 200.0,
-200.0, -29.3, -70.7, -70.7, -29.3,
-500.0, 0.0, =-200.0, 200.0, 0.0};

{250.0, 70.7, 29.3, -29.3, -70.7, 0.0,

0.0, -70.7, -29.3, 29.3, 70.7, 250.0,

-250, 0.0, 0.0, -250.0};

(0.0, 17.7, 7.3, -7.3, =-17.7, 0.0,
0.0, =-17.7, =7.3, 7.3, 17.7};

(-375.0, -7.3, -17.7, -17.7, -7.3,
-75.0, 75.0, 7.3, 17.7, 17.7, 7.3}:

clk_inv(x0, y0, gatel, gate2, gate3, gate4)

float x0, yO;

char *gatel, *gate2, *gate3, *gate4;

{

static float cinvy[]

static float cinvx2(]

static float cinvy2[]

move abs 2(x0+100C.C, y0+250.7});

polyline rel 2(cinvx, cinvy, 16);

move abs_ 2(x0+1250.0, y0+750.0);

polyline rel 2(cinvx2, cinvy2, 11);

set charspace(25.0):

set charsize(80.0, 80.0);

mcve_abs 2 (x0+1250.0+(-52.5*(strlen(gatel)))

text (gatel) ;

move_abs_2(x0+1250.0+(-52.5*(strlen(yate2))), (y0+850.0));

text (gate2) ;

move abs 2(x0+1000.0+(-105.0*(strlen(gate3)+0.5)),
(y0+585.0)) ;

text (gatel)

move abs_ 2(x0+1750.0, y0+585.0);

text (gated) ;

(yO+150.0)) ;

i

88

DFF.C, function to display a D type Flip Flop.
/**
Date: 8 November 1989
Title: Graphical Display Routine
Filename: dff.c
Author: Capt Stuart Yarost
Project: Extraction System and Graphical Display
Operating System: Unix V4.3
Language: C
Description: Displays a D type flip-flop.

Passed Variables: Gatetype, node names, coordinates.
* Calling Modules: Drawit.c
LEEEEEEEEEEEEE SRR EREEEEEEEERESEREE SRR EEEEEREEEREEEERESEEE W]
#include <usercore.h>
#include <string.h>
static float dffx[] = {500.0, 0.0, 0.0, 500.0, 0.0, 400.0,
-400.0, 0.0, -500.0, 0.0, 0.0, =-500.0, 0.0, =-400.0, 400.0,
0.0};
static float dffy[] = (0.0, -50.0, 50.0, O.
500.0, 0.0, 100.0, -100 0, 0.0, -500, O.
dff(x0, y0, gatel, gate2, gate3, gated)
float x0, yO;
char *gatel, *gate2, *gate3, #*gated;
{
move_abs_2(x0+2000.0, y0+500.0):
polyline rel 2(dffx, dffy, 16):;
set charspace(50.0);
set charsize(160.0, 160.0);
move abs 2 (x0+2500.0+(-105.0*(strlen(gatel))) ,y0+1700.0);
text (gatel) ;
move_abs 2(x0+2500.0+(-105.0*(strlen(gate2;)), y0+280.0);
text (gate2);
move_abs_ 2(x0+2000.0+(-210.0*(strlen(gate3)+0.5)),y0+1170.0);
text (gate3) :
move_abs_2(x0+3100.0, y0+1170.0);
text (gated) ;
nove_abs 2(x06:2180.0, y0+1000.0);
set charspace(1.0);
text ("DFF") :
set charspace(30.0);
set _charsize(120.0, 120.0);
move abs 2(x0+2010.0, y0+1000.0);
text ("D") ;
move abs 2(x0+2790.0, y0+1000.0):
text("Q") :
move_abs 2 (x0+2300.0, y0+1350.0):
text ("P1");
move abs 2(x0+42290.0, y0+630.0)
text ("pP2");

¥ % F* * X % X X F

0, 500.0, 0.0, 0.0,
0, 0.0, -500.0};

89

Vi (VERV LARGE SC. . XU AIR FORCE I
MRIGHT-PRTTERSON AFB OH SCHOOL OF E
'UNCLASSIFIED DEC 89 RFIT/GCE/ENGIBSD-B .

7

“ 0 TR e

:_-—___: Tz _

== " v
i

= |
=2 [l e

INV.C, function to display an inverter.
/**************************x*************k-k**k**xls**.* tkk ok ok k
Date: 8 November 1989
Title: Graphical Display Routine
Filename: inv.c
Author: Capt Stuart Yarost
Project: Extraction System and Graphical Display
Operating System: Unix V4.3
Language: C
Description: This function displays an inverter.
Passed Variables: Component type, node names,

x and y coordinates.
* Calling Modules: Drawit.c
***********k**/
tinclude <usercore.h>
#include <string.h>

* % X ¥ N X X % ¥ *

static float invx][]

{500.0, 29.3, 70.7, 70.7, 29.3, 250.0,
-250.0, -29.3, -70.7, -70.7, =-29.3,
-500.0, 0.0, =-250.0, 250.0, 0.0,};

{250.0, 70.7, 29.3, -29.3, =70.7, 0.0,
0.0, -70.7, -29.3, 29.3, 70.7, 250.0,
-250.0, 0.0, 0.0, =-250.0);

static float invy[]

inv(x0, y0, gatel, gate2)

float x0, yoO;

char #*gatel, *gate2;

{
move abs 2 (x0+10C0.0, y0+250.0);
polyline rel 2(invx, invy, 16);
set_charspace(25.0) ;
set_charsize(80.0, 80.0);
move_rel 2(-105.0*(strlen(gatel)+0.5), 335.0);
text (gatel);
move_abs 2(x0+1750.0, y0+585.0);
text (gate2) ;

MUX.C, function to display a multiplexor.
/**

Date: 8 November 1989

Title: Graphical Display Routine

Filename: mux.c

Author: Capt Stuart Yarost

Project: Extraction System and Graphical Display

Operating System: Unix V4.3

Language: C

Description: This function displays a multiplexor.

Passed Variables: Component type, node nanes,

x and y coordinates.

* Calling Modules: Drawit.c
7‘:*/
#include <usercore.h>
#include <string.h>
static float muxx[]

% & % Ok ok K ok H * *

{500.0, 0.0, 0.0, 500.0, 0.0, 400.0,
-400.0, 0.0, -500.0, 0.0, 0.0, -500.0,
0.0, -400.0, 400.0, 0.0, -400.0, 400.0,
0.0}:

{0.0, -50.0, 50.0, 0.0, 500.0, 0.0,
0.0, 500.0, 0.0, 100.0, -~-100.9, 0.0,
-300, 0.0, 0.0, -400.0, 0.0, 0.0,
-300.0}):

mux (x0, yO0, gatel, gate2, gate3, gate4, gateb)
float x0, yO;
char *gatel, *gate2, *gate3, *gated4, *gate5;

{

4

avic fioat muxy(]

o

move_abs 2 (x0+2000.0, y0+500.0);

polyline rel 2{muxx, muxy, 19);

set charspace(50.0);

set _charsize(160.0, 160.0);

move_abs 2(x0+2500.0+(-105.0*(strlen(gatel))), y0+1700.0);

text (gatel) ;

move_abs 2(x0+2500.0+(-105.0*(strlen(gate2))), y0+280.0);

text (gate2);

move_abs 2 (x0+2000.0+(-210.0*(strlen(gate3)+0.5)),
y0+1370.0) ;

text (gate3):

move_abs 2(x0+2000.0+(-210.0*(strlen(gate4)+0.5)),
y0+970.0) ;

text (gated)

mnve abs 2(x0¢3160.0, y0+1170.0);

text (gateb) ;

move_abs 2(x0+2180.0, y0+1000.0);

set charspace(1.0);

text ("MUX") ;

91

NAND2.C, function to display a NAND gate.
/**

* Date: 8 November 1985

* Title: Graphical Display Routine

* Filename: nand2.c

& * Author: Capt Stuart Yarost

* Project: Extraction System and Graphical Display

* Operating System: Unix V4.3

* Language: C

* Description: This function displays a NAND gate.

* Passed Variables: Component type, node names,

* x and y coordinates.
e * Calling Modules: Drawit.c
“5f **/
e #include <usercore.h>
e #include <string.h>
{ff static fleat nandx[] = {500.0, 95.65, 81.1, 54.2, 19.05, 29.3,
. 70.7, 70.7, 29.3, 200, -200, =-29.3,
9 -70.7, =70.7, =-29.3, -19.05, -54.2,
g -81.1, -95.65, -500.0, 0.0, -200.0,

200.0, 0.0, =-200.0, 200.0, 0.0};

T static float nandy[] = (0.0, -19.05, -54.2, -81.1, -95.65,
4 70.7, 29.3, -29.3, =-70.7, 0.0, 0.0,
b -70.7, -29.3, 29.3, 70.7, -95.65,
3 -81.1, -54.2, -19.05, 0.0, 100.0, 0.0,
3 0.0, 300.0, 0.0, 0.0, 100.0};

nand2 (x0, yC, yatel, gate2, gate3)
float x0, yO:
char *gatel, *gate2, *gate3;
{
move_abs 2(x0, yO0);
move_rel 2(1000.0, 750.0);
polyline rel 2(nandx, nandy, 27):
set charspace(25.0);
set charsize(80.0, 80.0);
move_rel 2(-105.0%*(strlen(gatel)+0.5), -30.0);

text (gatel) ;

move abs 2((-105.0*(strlen(gate2)+0.5)+x0+1000),420.0+y0) ;
text (gate2):

move abs 2(x0+1980.0, y0+580.0);

text (gate3) ;

92

NOR2.C, function to display a NOR gate.
/***k********k***

* Date: 8 November 1989

* Title: Graphical Display Routine

* Filename: nor2.c

* Author: Capt Stuart Yarost

* Project: Extraction System and Graphical Dispiay
* Operating System: Unix V4.3

* Language: C

* Description: This function disp’ays a HOR qgat

* Passed Variables: Component type., node nanes,

* x and y coordinates

* Calling Modules: Drawit.c
hkhkkhkhkhkhhkhkhkhhkhkikkAkhkrhkdbhkdbhhkhdhkhhhkhbhkdrrtdkhhbhhhkddk 0 -7 b &

#include <usercore.h>
#include <string.h>
static float norx[]

I

{98.0, 97.1, 95.2, 92.4, 38.7, 8:1.2,
78.8, 72.7, 29.3, 70.7, 70.7, 9.3
200, -200, -29.3, -70.7, ~70.7, =G, 1,
-72.7, -78.8, -84.2, -g88.7, -9 ..,
-95.2, =97.1, -98.0;,;

{(-4.8, -14.4, -23.8, -33.1, -4’

-50.5, -58.5, ~65.9, 706.7, 2 AR
-70.7, 0.0, 0.0, -70.7, =-22.°, 9.3,

static float nory[]

0

70.7, —-65.9, =58.5, -£l.%, -4u.0,
-33.1, -23.8, -14.4,-4¢.8};
static float norx2[] = {25.3., 18.2, =-300.0, Lu& &, .o, ©.7,
-3.7, -11.0, =300.0, siu.. -:1,.2,
-25.3};
static float nory2{] = {(-70.7, ~72.8, 0.0, 0.0. -7+.3, -75.0,
-75.0, -74.5, 0.0, 0.0, =/2.8, =70.7%;

nor2(x0, yo0, gatel, gate2, gate3)
float x0, yO;
char *gatel, *gate2, *gate3;
{
move_abc 2(x0+1000, y0+750);
polyline _rel 2(norx, nory, 26);
move_abs_2(x0+1000, yO0+750);
polyline_rel 2(norx2, nory2, 12);
set_charspace(25.0);
set charsize(80.0, 80.0);
move_abs_2((-105.9%*(strlen(gatel)+0.5)+x0+1030) 60 5 ey
textfgatel) ;
move_abs 2((-105.0*(strlen(gate2)+0.5)+x0+1040), 390.0+4y0)
text (gate2) ;
move_abs 2(x0+1940.0, y0+560.0);
text(gate3d);

93

NPRANS.C, tunction to display a N type transistor.
S hhkkkhk Ak ik hkhkkaxxrxrxxkrkkkhhkhhkkkkhhkhkhkhkhkhkkhkhhkhkkhkaokxrkkhkhkhkkkkkkxk

/

* Date: U Hovember 1989

* Titlcr: Graphical Display Routine

* Filenane: ntrans.c

* Author: Capt Stuart Yarost

* Projeocy: ©xtraction System and Graphical Display
* Operating “vstem: Unix V4.3

& Language: C

* Description: This function displays a N-type
* transistor.

* Passed Variubles: Component type, node nauwes,
* x and y coordinates.

*

Calling Modules: Drawit.c

* k % Kk k k***x**********/
tinclude <usercore.h>

zinclude ~string.h>

St

t

ntatic float ntranx{] = {C.0, -40.0, 0.0, 40.0, 0.0};
ctatic tloat ntrany(] = {80.0, 0.0, 80.0, 0.0, 80.0};
static tloat ntranx2({} = {0.0, -60.0, 60.0 ,0.0};
statlce rieat ntrany2{] = (40.0, 0.0, 0.0, 40.0};

{x0, y0, gatel, gate2, gatoel
X3, y0;
jatel, *gatel, *gateld:

~

now 2 _abs_ 2(x0+200
poliyline rel Zin

.0, y0+70.0);

3nx ntrany, 5);
0, y0+150.0);
rinxc, ntrany?2, 4);
A

o+
move abs 2(x0-120.
pol- line rel zint
cet charspdce(.0
set ~harsize (27,0
move abs 2(x0+1-.0-25.0%(strlen(gacel) +0.59), y0+210);
vtoextigatel) s

move abs 2(x0+z7 -l2.5*(strlen(gate2)), y0+331);
text (gate2)

move abs 2(x0+200-12.5*%(strlen(gate3)), y0+40):
text(gateld)

;
.ot

LG, 20.0)

i

PTRANS.C, function to display a P type transistor.
/**:k'k*":********
Date: 8 November 1989
Title: Graphical Display Routine
Filename: ptrans.c
Author: Capt Stuart Yarost
Project: Extraction System and Graphical Display
Operating System: Unix V4.3
Language: C
Description: This function displays a p-type

transistor.
Passed Variables: Component type, node names,
x and y coordinates.
* Calling Modules: Drawit.c
**/
#include <usercore.h>
#include <string.h>

L T A

static float ptranx[] = {0.0, -40.0, 0.0, 40.0, 0.0};

static float ptrany[] = (80.0, 0.0, 80.0, 0.0, 80.0};:

static float ptranx2(] = (0.0, -2.9, -7.1, -7.1, -2.9, -60.0,
60.0 , 2.9, 7.1, 7.1, 2.9, 0.0};

static float ptrany2([] = {40.0, -7.1, -2.9, 2.9, 7.1, 0.0,
0.0, 7.1, 2.9, -2.9, -7.1, 40.0};

ptrans (x0, y0, gatel, gate2, gate3)

float x0, yO:

char *gatel, *gate2, *gate3;

{
move abs_2(x0+200.0, y0+70.0);
polyline_rel 2(ptranx, ptrany, 5):
move abs_ 2 (x0+150.0, y0+150.0);
polyline rel 2(ptranx2, ptrany2. 12);
set charspace(5.0);
set charsize(20.0, 20.0);
move_abs 2 (x0+130-25.0*(strlen(gatel)+0.5), y0+210);
text (gatel);
move_ abs 2 (x0+200-12.5*(strlen(gate2)), y0+230);
text (gate2);
move_abs_2(x0+200-~-12.5*(strlen(gate3)), y0+40);
text (gate3) ;

95

TGATE.C, function to display a tgate.

/*****i***************x********************************Ax**

* X ¥ F X * X H * *

*

Date: 8 Ncvember 1989

Title: Graphical Display Routine

Filename: tgate.c

Author: Capt Stuart Yarost

Project: Extraction System and Graphical Display

Operating System: Unix V4.3

Language: C

Description: This function displays a tgate.

Passed Variables: Component type, node names,
X and y coordinates.

Calling Modules: Drawit.c

**/

#include <usercore.h>
#include <string.h>

static float tgatex[]

{250.0, 0.0, 200.0, -200.0, 0.0,
-500.0, 0.0, -200.0, 200.0, 0.0,
250.0, 0.0, 0.0, -17.7, =7.3, 7.3,
17.7, 6.0, 0.0, 17.7, 7.3, =7.3
-17.7};

’

static float tgatey[] = {-250.0, 250.0, 0.0, 0.0, 250.0,
-500.0, 250.0, 0.0, 0.0, 250.0,
-250.0, -250.0, 250.0, 7.3, 17.7,
17.7, 7.3, 225.0, -225.0, -7.3,

-17.7, =-17.7, =7.3};

tgate(x0, yO0, gatel, gate2, gate3, gate4)
float x0, yoO;
cha. *gatel, *gate2, *gate3, *gate4;

{

move_abs_2(x0+1250.0, y0+500.0);

polyline rel 2(tgatex, tgatey, 23);

set charspace(25.0);

set charsize(80.0, 80.0);

move_abs_ Z (x0+1250.0+(-52.5*(strlen(gatel))), y0+840.0);
text (gatel) ;

move_abs 2 (x0+1250.0+(~-52.5*(strlen(gate2))), y0+140.0);
text (gate2) ;

move abs 2 (x0+1000.0+(-105.0%(strlen(gate3)+0.5)),y0+585.0);
text (gate3):

move_abs 2(x0+1540.0, y0+585.0);

text (gated) ;

96

XNOR.C, function to display a exclusive NOR gate.
/***********************k**********************************
Date: 8 November 1989
Title: Graphical Display Routine
Filename: xnor.c
Author: Capt Stuart Yarost
Project: Extraction System and Graphical Display
Operating System: Unix V4.3
Language: C
Description: This function displays a X-NOR gate.
Passed Variables: gatetype, node names, coordinates.

* Calling Modules: Drawit.c

**/

#include <usercore.h>

#include <string.h>

static flcat xnorx[] = {196.0, 194.2, 190.4, 184.8, 177.4,
168.4, 157.6, 145.4, 58.6, 141.4, 141.4, 58.6, 400, -400,
-58.6, -141.4, -141.4, -58.6, -145.4, -157.6, -168.4,
-177.4, -184.8, -190.4, -194.2,-196.0};

static float xnory(] = {(-9.6, -28.8, -47.6, -66.2, -84.0,
-101.0, -107.0, -131.8, 141.4, 58.6, -58.6, -141.4, 0.0,
0.0, -141.4, -58.6, 58.6, 141.4, -131.8, -107.0, -101.0,
-84.0, -66.2, -47.6, -28.8, =-9.6};

static float xnorx2{] = {50.6, 36.4, -600.0, 600.0, 22.0, 7.4,
-7.4, -22.0, -600.0, 600.0, =-36.4, -50.6};

static float xnory2([] = {-141.4, -145.6, 0.0, 0.0, -148.6,
-150.0, -150.0, -148.6, 0.0, 0.0,-145.6, -141.4};

static float xnorx3[] {50.6, 36.4, 22.0, 7.4, -7.4, -22.0,

-36.4, -50.6};
{-141.4, -145.6, -148.6, -150.0,
-150.0, -148.6, -145.6, -141.4};

xnor (x0, y0, gatel, gate2, gate3, gated, gateb)

float x0, yO0;

char *gatel, *gate2, *gatel3, *gate4, *gate5;

{

* % A X % ¥ X X *

il

static float xnory3[]

move abs 2(x0+2160, y0+1500);

polyline rel 2(xnorx, xnory, 26);

move abs 2 (x0+2160, y0+1500);

polyline rel 2(xnorx3, xnory3, 8);

move abs 2(x0+2000, yO0+1500);

polyline rel 2(xnorx2, xnory2, 12);

set charspace(50.0);

set charsize(160.0, 160.0);

move abs 2((-210.0*(strlen(gatel)+0.5)+x0+2080), 1330.0+y0);
text (gatel) ;

move abs 2((-210.0*(strlen(gate3)+0.5)+x0+2080),780.0+y0);
text (gateys);

move abs 2(x0+4040.6, y0+1120.0);

text (gateb) ;

97

XOR.C, function to display a exclusive OR gate.
/**

* Date: 8 November 1989

* Title: Graphical Display Routine

* Filename: xor.c

* Author: Capt Stuart Yarost

* Project: Extraction System and Grcghical Display
* Operating System: Unix V4.3

* Language: C

* Description: This function displays a X~-OR gate.
* Passed Variables: Component type, node names,

* x and y coordinates.

* Calling Modules: Drawit.c

**/

#include <usercore.h>

#include <string.h>

static float xorx[] {196.0, 194.2, 190.4,
168.4, 157.6, 145.4, 400, -400, -145.4,
-177.4, -184.8,-190.4, -194.2, -196.0);

static float xory[] {-9.6, -28.8, -47.6, -G6.2,
-101.0, -107.0, -131.8, 0.0, 0.0, -131.8, -107.
-84.0, -66.2,-47.6, -28.8, -9.6};

static float xorx2([] {50.6, 36.4, -600.0,

184.8,
-157.6,

177.4,
-168.4,

-84.0,
0, -101.0,

600.0,

-7.4,

-22.0,

-600.0,

600.0,

-36.4,

-50.6};

static float xory2{]

(-141.4,
-150.0,
-145.6,

-145.6,
-150.0,
-141.4};

0.0,
-148.6,

0.0,
0.

0,

static float xorx3[] {50.6, 7. -7.
-36.4,
{-141.4,
-150.0,

gate2, gate3,

36.4, 22.0,
-50.6}:
-145.6,
-148.6,
gate4,

4, 4,

-150.
-141.

static float xory3[] -148.6,
-145.6,
xor (x0, yO0, gatel, gateb)
float x0, yO0;
char *gatel,
{
move abs 2 (x0+2160, y0+1500) ;
polyline rel 2(xorx, xory, 18);
move_abs_2(x0+2160, y0+1500);
polyline rel 2(xorx3, Xxory3,

*gate2, *gateld, *gate4, *gate5;

8);

move_abs_2(x0+2000,
polyline rel 2(xorx2, Xxoryz,
set charspace(50.0);

set charsize(160.0,

move_abs_2((-210.0*(strlen(gatel)+0.5)+x0+2080),

tevt (gatel);
move abs 2((-210.0*(strlen(gate3)+0.5)+x0+2080),780.0+y0) ;
text (gatel);

move_abs_2(x0+3700.0,

text (gate5s) ;

y0+1500) ;

160.0) ;

98

12);

y0+1120.0) ;

1330.0+y0) ;

Appendix B: Graphical Display Code

DRAWTEST, batch program to run "testgate.c".

2! /bin/csh -f
shelltool -Wp 0 0 —-Ws 900 900 "tectgate"

TESTGATE, program t» test functions of "drawit.c™.

Jhkhkkkkhkkakkhkkkkkhkhkkkhkhkhkhkhkkhkhrkhkhhkkhkhkhkrkkhkhkkhkkhhkhkxxhkdkkkkkkk*x

Date: 8 November 1989

Title: Graphical Display Tester

Filename: testgate.c

Author: Capt Stuart Yarost

Project: Extraction System and Graphical Display

Operating System: Unix V4.3

L.anguage: C

Description:
This routine tests functions by drawing
ccormponents on the screen.

Passed “ariables: Component type, node names

Returns: None

Files Read: nono

Hardwars Input: Right mouse button.

Modules Called: buffer.c <1k inv.c dff.c inv.Cc mux.cC
nandz.oc nor2.c ntrans.c ptrans.c
tgate.c xnovr.o MNor.o

Files Written: none

Special Instructions : Must be run i tho Gunview

environment.
Run batch file "drawtoct" to
start the progranm.

Ak kkhkhkkhkhkhkhkikhkkhkhkhhkhkhkhkhkdhkhkkhkkkkh: khhkkkhkkkhkkhkkhkrrhdrhkhhkkxrs -~

#include <stdio.h>
#include <string.h>
#include <usercore.h>

#define minview(n) (O.
tdefine maxview(n) (O

n)/2))
n)/2);

- (
+ (

(SO}

char gatetype(20], another(2];

99

in* butt, xmax, xmin, ymax, ymin;

int pixwindd():

float xrange, yrange, xperc, yperc;

struct vwsurf vsurf = DEFAULT VWSURF (pixwindd) ;
struct vwsurf vsurf2 = DEFAULT VWSURF(pixwindd) ;

main()
{
another{0] = 'y';
while (another[0] == 'y"')
{

printf ("what type component do you wish to test?\n");

scanf ("3s", gatetype);

xmin = 0;
Xxmax =10000;
ymin = 0;

ymax =10000;

printf("The coordinate limits are as follows:\n");
printf("xmin = %d\n",xmin) ;
printf("xmax = %d\r ,xmax+5000) ;

(

(

printf ("ymin %d\n",ymin) ;
printf ("ymax = %d\n\n",ymax+50090) ;

printf ("wWwhat part of tne screen "):

printf("do you wish to display?\n");
printf("Please enter \"xmin xmax ymin ymax\""}:
printf (" without goutes.\n");

scanf ("%d %d %d %d", &xmin, &xmax, &yr 0, §&yoax);
Xrange = xmax - Xmin;

yrange = ymax - ymin;

if (xrange > yrange)
l

Xxperc = 13
PRSI yrange [oxrangoe:s
A
i
€. S0
}
Yy .
SN At !
e 4
B T, Wy
oyt e S f , FATS } e
= A VAR D ab i
RN O S A A S I

cetovowprt 2 iminview(Xperc), maxview(xperc),
minview(yperc), maxview(yperc)):

100

set winaow((float)xmin, (float)xmax,
(float)ymin, (flocat)ymax);
set output clipping(TRUE) ;
set window clipping(FALSE) ;
create_retained_segment (1) -
move_abs 2((float)xmin, (float)ymin);
line_rel 2(xrange, 0.0);
line_rel 2(0.0, yrange):
line rel 2(-1.0*(xrange), 0);
/ 1ine rel 2(0.0, -1.0%(yrange));
‘tose_retalned_segment () ;
initialize _device (BUTTON, 3);
initialize device(INCATOR, 1),
s« © a2cho surface(LOCATOR, 1, &vsurf);
sev _echo_surface(BUTTON, 3, &vsurf);
se” echo(LOCATOR, 1, 1):
set .hnarprecision(CHARACTER) ;
set tewt index (1) ;
Ut 0,
- f . istrcemp (gatetype, Y“ntrans")))

'~ image transformation_type (NONE) ;

‘reate retained segment(2):

Tt rans (0.0, 0.0, "gatel", "gate2", "gatel3");
l7ze retained segment();

B at

it (! (strcmp(gatetype, "ptrans")))

Ny -

set image transformation_type (NONE} ;
create_retained segment(2):

pt.ansf0.0, C.0, "gatel", "gate2", '"gatel"):
close retained segment();

else it (!listrcmp(gatetype, "inv'")))
i
set image transformation type (NONE)
croate rotainod cegment(2)
nviGLn, 0.0, "gatel", "gate2");

1

clnse retained segment();
el remn(gatetype, "tgate")))

it arsformation tvpe (NONE) @
gt maio sneament (O

Tyanod, Maate2", "gate3", "gated");

ClOS'f._“ : ‘ N P R
)

else if (!(strcmp(, ‘< . -, "oaordety oo
{

101

set_image_transformation_type (NONE) ;
create retained_segment(2);
nand2 (0.0, 0.0, "gatel", "gate2", "gate3"):
close retained segment();
}
else if (! (strcmp(gatetype, '"nora")))
{
set image_transformation_type (NONE) ;
create_retained_segment (2):
nor2 (0.0, 0.0, "gatel", "gate2", "gate3");
close retained segment();
>
else if (! (strcmp(gatetype, Yclk_inv")))
{
set image_ transformation_type (NONEL) ;
create retained_segment(2):;
clk _inv(0.0, 0.0, "gatel", "gate2", 'cite3", "gated");

close _retained segment():
}

else 1if (! (strcmp(gatetype, "buffer")))
{
set image transformation_type(NONE) ;
create retained_segment(2);
buffer(0.0, 0.0, "gatel", "gate2");
close_retained_segment();
}

else if (! (strcmp(gatetype, "mux")))
{
set image_ transformation_type (NONE) ;
create_retained_segment(2);
mux (0.0, 0.0,"gatel","gate2","gate3",b"gates4",

"gate5") :

close retained segment();
}

else if (! {strcmp(gatetype, "xnor")))
{
set image transformation_type (NONE) ;
create retained_segment(2);
xnor (0.0, 0.0, "gatel", "gate2", "gate3", "gate4"

"gateS5");

close retained segment();

}

else if (! (strcmp(gatetype, "xor")))

{

set image_ transformation_type(NONE) ;

create retained_segment(2):

xor(0.0, 0.0, "gatel", "gate2", "gate3", "gate4",
"gateb5") ;

102

close _retained_segment():
}
else if (!'{ctrcup(gatetype, "dff")))
{
set image_transformation_type (NONE) ;
create_retained_segment(2):
dff(0.0, 0.0, “gatel", "gate2", "gate3", "gatea")

close_retained_segment():;
)
else

printf("That is not a testable component!\n");
butt = 37
}
while (butt == 0) await_any_button(l,&butt);
terminate_device (BUTTON, 3) ;
terminate_device (LOCATOR, 1) ;
deselect view_surface(&vsurf);
terminate_core():
printf ("\n\nWould you like to test another");
printf(" gate, y or n? ");
scanf ("%1s", another);
1

103

CIRCLEPT.C, program to generate moves to draw a circle.

/**

* Date: 8 Ncvember 1989

* Title: Circle Coordinate Generator

X Filename: circlept.c

* Author: Capt Stuart Yaroust

* Project: Extraction System and Graphical Display
* Operating System: Unix V4 3, DOS V3.3

* Language: C

* Description:

* Prcluces a list of x mecves and y moves

* necessary to draw a circle of x points and
*

*

y radius. a and y are input by the user.
***/

#include <stdio.h>
#include <math.h>

tdefine pi 3.141592654
#define arc 2*pi/number

int number, radius, count;
double xmov, ymov, xpos, ypos, oldx, oldy:

main()

{
printf ("How many points on the circle?\n"):
scanf ("%d", &number);
printf ("Wwhat is the desired radius?\n");
scanf ("%d", &radius);

oldx = -1.0;
oldy = 0.0;
for(count = 1; count <= number; count++)
{
Xpos = cos(pi - (arc * count)};
ypos = sin(pi -~ (arc * count)):
xmov = (xpos - oldx)*radius;
vmov = (ypos - oldy)*radius;
oldx = xpos;
oldy = ypos;
printf("x move is : %8.1f y move is :', xmov):;
printf (" %¥8.1f\n", ymov);

}

104

NEW.SIM
The following is the MEXTRA produced file of the clock
generator circuit.

units: 1 tech: cmos-pw format: UCB
128 0Z _pgl vdd 300 21596.3 =-26700 =-24000
128 0Z pgl vdd 300 21596.3 -28500 -24000
128 0Z_pgl Vvdd 300 21596.3 -=-30300 -24000
128 0Z pgl vdd 300 21596.3 =32100 -24000
128 O0Z pgl Vvdd 300 21596.3 =33900 -24000
128 0Z pgl vVdd 300 21596.3 =-42900 -24000
128 0Z pgl Vdd 300 21596.3 =-44700 -24000
128 072 _pgql vdd 300 21596.3 -46500 =-24000
128 0Z pgl vdd 300 21596.3 =-48300 -24000
128 0Z_pgl vdd 300 21596.3 -50100 =-24000
53 0Z pg2 vdd 300 21596.3 76800 -29400
53 0Z pg2 vdd 300 21596.3 75000 -29400
53 0Z_pg2 vVdd 300 21596.3 73200 =-29400
53 0Z pg2 Vvdd 300 21596.3 71400 =-29400
53 0Z _pg2 Vvdd 300 21596.3 69600 -29400
53 0Z _pg2 Vdd 300 21596.3 60600 =-29400
53 0Z_pg2 vdd 300 21596.3 58800 =-29400
53 0Z_pg? vdd 300 21596.3 57000 =-29400
53 0Z_pg2 Vdd 300 21596.3 55200 -29400
53 0Z pg2 vdd 300 21596.3 53400 -29400
IZ capl 177 392 (900 -8100)

277 vdd 233 300 13647.8 24450 -9900

329 277 vdd 300 6748.75 18600 =-11400

53 vdd 0Z pg2 300 21596.3 53100 -17850
53 vdd O0Z pg2 300 21596.3 54900 -17850
53 vdd 0Z_pg2 300 21596.3 56700 =-17850
53 vdd 0OZ_pg2 300 21596.3 58500 ~-17850
53 vdd 0Z pg2 300 21596.3 60300 -17850
53 vdd 0Z pg2 300 21596.3 69300 -17850
53 vdd 0Z_pg2 300 21596.3 71100 -17850
53 vdd OZ pg2 300 21596.3 72900 -17850
53 Vdd 0Z pg2 300 21596.3 74700 -17850
53 vVdd 0Z pgq2 300 21596.3 76500 =-17850
233 53 vdd 300 21596.3 37200 -17100

233 53 vdd 300 21596.3 39000 ~-17100

233 53 vdd 300 21596.3 40800 =17100

233 53 Vdd 300 21596.3 42600 -17100

233 53 Vvdd 300 21596.3 44400 -17100

277 Vvdd 233 300 13647.8 24450 =-12750

450 449 520 300 450 3300 -1350

498 520 GND 300 450 2700 -1350

IZ go GND 498 300 450 1500 ~-1350

424 453 GND 300 450 27600 =-1650

453 GND 329 1200 450 25500 -2250

447 329 GND 1200 450 23550 -2250

ocooO0OM®MOTDVTTTOVTtoso QoD DT 0000 ——

105

wooottvsovoTTTO OO OOODOOOOTTOTTOVTNADODOTTTVOTCTTCCOT OODODO®OOO®OO

329 GND 447 1200 450 21600 -2250

450 424 GND 300 450 17100 -2700

449 443 GND 600 450 S100 -2700

424 447 GND 1200 450 19500 -2850

177 444 GND 1200 450 10650 -3150

444 450 GND 1200 450 15000 -3300

443 177 GND 1200 450 7350 =3300

277 GND 233 300 13497.8 24300 -4800

128 vdd 0Z_pql 300 21596.3 =-30600 -12450
128 vdd 0Z_pql 300 21596.3 =32400 -12450
128 Vdd 0Z pgl 300 21596.3 -34200 -12450
128 Vdd 0Z pgl 300 21596.3 -43200 -12450
128 Vdd OZ pgl 300 21596.3 -45000 -12450
128 Vdd 0Z pgl 300 21596.3 -46800 -12450
128 Vdd 0Z pgl 300 21596.3 =-48600 -12450
128 Vdd 0Z _pgl 300 21596.3 -50400 -12450
128 Vdd 0OZ pgl 300 21596.3 -28800 -12450
128 vdd 0Z pgl 300 21596.3 =27000 -12450
329 GND 277 300 3299.75 18600 -6450

584 GND 533 300 13497.8 -5550 9000

IZ cap2 444 763 (20400 5100)

447 584 vdd 300 6748.75 6150 4200

584 vdd 533 300 13647.8 -5550 4050

424 Vdd 453 300 900 27300 1650

450 vdd 424 300 900 16950 1350

453 329 589 1200 900 24750 1200

447 589 vdd 1200 900 23250 1200

329 vdd 587 1200 900 21150 1200

233 GND 53 300 17996.8 41850 -5550

233 GND 53 300 17996.8 40050 -5550

233 GND 53 300 17996.8 38250 -5550

53 0Z_pg2 GND 300 17996.8 56400 -1350

53 0Z pg2 GND 300 17996.8 58200 -1350

53 OZ pg2 GND 300 17996.8 60000 -1350

53 0Z pg2 GND 300 17996.8 69600 =1350

53 0Z _pg2 GND 300 17996.8 71400 =-1350

53 0Z pg2 GND 300 17996.8 73200 -1350
533 128 vdd 300 21596.3 -17700 -750

533 128 VAd 300 21596.3 -15900 -750

533 128 Vdd 300 21596.3 -14100 =750

533 128 vdd 300 21596.3 -12300 =750

533 128 vdd 300 21596.3 -10500 =750

IZ go vdd 498 300 900 1500 900

498 449 vdd 300 900 2700 900

450 vdd 449 300 900 3900 900

449 443 vdd 600 900 5250 900

177 vdd 444 1200 900 10500 1050

584 vdd 533 300 13647.8 -5550 1200

443 vdd 177 1500 900 7200 1200

444 VA3 450 1200 900 14850 1200

106

Ooooo00000000000000000C0COCO0O0OOO0OOOCOOODOOOOOOOM®OOT

424
128
128
128
128
128
128
533
533
533
128
128
128
128
128
128
53

53

53

53

53

53

587
GND
CND
GND
GND
GND
GND
GND
GND
GND
0Z_
0z_
0z_
0z_
0z_
0z_

GND

GND

GND

GND

GND

GND

447 1200 900 19650

0Z pql
0Z pqgl
0Z pql
0Z pql
0Z pgl
0Z_pqgl

128 300 17996.8
128 300 17996.8
128 300 17996.8

rgql GND
pdl GND
pgl GND
pgql GND
P9l GND
pal GND
0Z _pqg2
0Z pg2
0Z _pg2
02 pg2
0Z pqg2
0Z pqgz2

300
300
300
300
300
300

300
300
300
300
300
300
300
300
300
30C
300
300

17996.8
17996.8
17996.8
17926.8
17996.8
17996.8

17996.8
17996.8
17996.8
17996.8
17996.8
17996.8
17996.8
17996.8
17996.8
17996.8
17996.8
17996.8

1200

-29700 14400
=-31500 14400
=33300 14400
=-42900 14400
~44700 14400
-46500 14400

-11550 10800
=13350 10800
-15150 10800

-46500 4050
~-44700 4050
=42900 4050
~33300 4050
-31500 4050
~-29700 4050

56400
58200
60000
69600
71400
73200

9000
9000
9000
¢C00
9000
9000

447 GND 584 300 3299.75 6150 10050
vdd GND 17835
IZ go GND 1758
IZ_capl GND 1885
0Z_pg2 GND 11677
O0Z_pgl GND 11672

53

128
177
233
277
329
424
443
444
447
450
533
584

17

GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND

cap?2

2190
2176
271
528
142
114
84
51
245
109
59
518
152
GND 22

20

107

i -42900 -24000)
. ~34700 =24000)
L -46500 -24000)
Lo -48300 —-24000}
H 2 -50100 -24007%)
5 i 76800 -29400)
52 Y N . 7HE000 -29400)
53 j W I L 173200 ~29400)
ol opad owdd 0y Z1o20.03 71100 -22400)
S20S pot o owdd D00 Z1ou03 69600 -25400)
2 00 o o vda 200 2105003 60600 -25400)
3 04 pgz vdd 357 21594.3 58A00 -29400;
32 02 pg2 vdd ol 21396.3 57000 -29400)
55 U2 pa2 vdd 35u 129403 55200 -Z29245G,
53 0Z pqg2 vidd 300 275GF,.3 52400 -L0400)
LY owdd 233 300 1364708 24450 -9900°

329 2,7 vid 300 /A748.7% 18600 -11400C)

53 vdd 0. pgZ2 300 21596.3 52100 -17850)
53 vdd G- 32 300 21596.3 %4900 -17850)
53 vdd Z_pg2 300 21596.3 56700 -17/850)
53 vA37 37 pg2 300 21596.3 58500 ~-17850)
53 vdd 0Z pg2 300 21596.3 60300 -17850)
53 vdd 0Z pg2 300 21596.3 69300 -17850)
53 vdd 0Z_pg2 300 21596.3 71100 =-17850)
53 vdd 0Z pg2 300 21596.3 72900 -17850)
53 vdd 0OZ pg2 300 21596.3 74700 -17850Q)
53 vdd 0Z pg2 300 21596.3 76500 -17850)
233 53 vdd 300 21596.3 37200 -17100)

233 53 vdd 300 21596.3 39000 -17100)

233 53 vdd 300 21596.3 40800 -17100)

233 53 vdd 300 21596.3 42600 =-17100)

233 53 wvdd 300 21596.3 44400 -17100)

277 vdd 233 300 13647.8 24450 -12750)

450 449 520 300 450 3300 -1350)

498 520 gnd 300 450 2700 -1350)

IZ go gnd 498 300 450 1500 =-1350)

424
453
447
329
450

=-30300
-22100
-33900

-24n09;
-24000)
-2400u)

-2400% ;x

453
gnd
329
gnd
424

gnd
329
gnd
447
gnd

300 450 27600 -1650)
1200 450 25500 =~2250)
1200 450 23550 -2250)
1200 450 21600 ~2250)
300 450 17100 -2700)

108

3

ho I

3

e e

oy
8

- e e
pEReEncRrelrelire e

449
424
177
444
443
277

443 gnd 60C 42¢ =100 -2700)

447 gnd 1200 450 19500 ~-2850)
444 gnd 1200 45C 10650 ~3150)
450 gna 1290 450 150¢0 ~-3300)
177 gnd 1200 45C 7:7¢ =3300)

gnd 233 300 1° 22300 -4800)

~97 .8
5

128 vdd Oz pqg. 202 21%%98.3 =-30600 -12450)
128 v I opat Tow ;lv?@.B ~32400 -12450)
1238 {1 00 2154603 =34200 -12450)
122 e 200 215%6.3 ~-43200 -12450)
1ea pagl 300 Z1596.3 =-45000 -12450)
128 31 200 21596.3 ~46800 -12450)
128 ¢ Fuu 21536.3 —-48600 -12450)
1282 SL0 2eC 21896.3 -50400 -124390)
107 1) 21596.3 -28800 ~124°00°
1w : 21596,2 -27000 -12450
AN N 3072 18600 —-6450)

2 B LIaun7.r B350 9000)
a7 AL 3075 Z“%O 3200
e " 550 4050
SIS ;650)
o 1350)
13 5 1200)
. S 1200,
12 TOI200)
SRS 20D 55500
SIS Uto -5550)
2 o Bz50 —5550)

A i 5056400 13700

2 O' 1 uui 8 58200 -13%
P rae o 760000 =130t
5 Qaﬁpq“ ana 63600 --1297)
23 02 pal gnd 71400 ~1250,
53 07 pogs gnd o L TRI0C -1 I50)
223 128 wddid 300 317700 =700
533 29 wvdd 370 6.7 -15%900 -7-°¢
533 28 wvid 00 3o-143100 27507
533 128 wdd 00 210603 -12300 —750)
533 122 wvdd 350 155002 =10500 =750)
I1Z go wvdid 495 3075 000 1500 300)
498 4470 vadd 100 oL 2700 00
450 vl 17 1005 3500 900)
447 34 St 0G0 e 250 900)
Pl b 120 e 10500 1080)

S CLUT T 5637.82 =5550 1200)

I Sodte T 900 7200 1200)

1 !)12 00 360D 14850 1200,

4 Vol 900 19650 1200)
DL g TG 00 17996.8 =29700 142003
1727 ol < pogl 3061552603 ~31500 14400)

INaLs
JRARS!

(n
(n
(n
(n
(n
(n
(n
(n
(n
(n
(n
(n
(n

(n
(n
(n
(n
(n
(n

128
128
128
128
533
533
533
128
128
128
128
128
128
53
53
53
53
53
53

gnd 0Z pql

gnd 0OZ_

pal

gnd 0Z pql

gnd 0Z_

pql

300
300
300
300

17996.8 -33300
17926.8 42900
17996.3 -44700
17996.8 =-46500

14400)
14400)
14400)
14400)

gnd 128 300 17996.8 -11550 10800)
gnd 128 300 17996.8 -13350 10800)
gnd 128 300 17996.8 -15150 10800)

0Z pql
0Z _pq1l
0Z pql
0Z_pql
0Z pql
0Z_pql

gnd
gnd
gnd
gnd
gnd
gnd

gnd 0OZ pqg2
gnd 0Z pqg2
gnd 0Z pg2
gnd 0Z pqgq2
gnd 0Z pqg2
gnd 0Z pqg2

300
300
300
300
300
300
300
300
300
300
300
300

17996.8 -46500
17996.8 -44700
17996.8 -42900
17996.8 -33300
17996.8 -31500
17996.8 =29700

4050)
4050)
4050)
4050)
4050)
4050)

17996.8 56400 9000)
17996.8 58200 9000)
17996.8 60000 9000)
17996.8 69600 9000)
17996.8 71400 9000)
17996.8 73200 9000)
447 gnd 584 300 3299.75 6150 10050)

110

Appendix D: User's Manual

Extraction Program
The extraction program can be run on any machine that can

run CLIPS. Machines with more memory and that are more

powerful are preferable.

Files needed are:
clips
sim2clip
"Sim"
trl.clp
tr2.clp
tr3.clp
findext.clp
trn.btt
findext.btt

The steps to perform the extraction are:

1. Rename the "sim" file to "new.sim". This "sim" file is
the output of the program MEXTRA.

2. Run the program sim2clip. A new file called good.clp
should now be in the directory. This file 1is the
processed "new.sim" file,

3. Run the extraction routines by typing "clips -f trn.btt".
This calls up CLIPS and runs the batch file trn.btt,
which contains the commands needed to run the various
rule files. The output of this process are four files;
outcompl.clp, compreml.clp, outcomp2.clp and

comprem2.clp. This files contain the first and second

levels of extraction.

111

4. Run the routines to find the extreme values, and to
produce the input file for the display routines, by
typing the command "clips -f findext.btt". This calls
up CLIPS and runs the batch file findext.btt. At the end

of this step there should be a file called "scaled.clp"

in the directory. Rename this file before further
extraction on any other «circuits, or it will be
overwritten.

Display Program
The display program can be run on any Sun 3 or Sun 4

workstation, provided that the code has been correctly

compiled for it. The program must be run from inside the
Sunview environment. The environment is started by typing
"cunview".

Files needed are
drawgate
drawit
scaled.clp (or what it was renamed)
The steps to use the graphical display are as follows:
1. Enter Sunview by typing "sunview".
2. Start the graphical display by typing "drawgate". Wait
for the new window to open.
3. Place the mouse pointer in the window, then type in the

name of the file produced in the extraction process, then

press RTN. Unless it was renamed, the file 1is

112

"scaled.clp". Do not use quotes when entering the name,
or the program will not be able to find the file.

Enter the minimum and maximum x and y coordinates as
asked by the program.

To escape the display, push the right mouse button while
the mouse pointer is on the graphical display. The input
window will return and ask if another file or view is
wanted. Answer y or n. Any answer besides y will cause

the program to exit. If y is entered, return tc step 3.

113

s

Bibliography

Fretheim, CDPT Erik J. Reverse Engineering VLSI Using
Pattern Recognition Techniques. MS Thesis
AFIT/GE/ENG/88J-1. School o©of Engineering, Air Force
Institute of Technolog, (AU), Wright-Patterson AFB, OH,
June 1988.

Dukes, CPT Michael A. A Multiple-Valued Logic System for
Circuit Extraction to VHDL 1076-1987. MS Thesis
AFIT/GE/ENG/885~1. Schoeol of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB, OH,
September 1988.

NASA, Lyndon B. Johnson Space Center, aArtificial
Intelligence Sectlion. CLIPS Reference Manual, Version 4.3
of CLIFS. June 19890.

Bratko, Ivan. PRCLOG Programming for Artificial
Intelligence. Reading, Massachusetts: Addison-Wesley
Publishing Company, 1987.

Kernighan, RBrian W. and Dennis M. Ritchie. The C
Progranming Langquage (Second Edition). Englewood Falls NJ:
Prentice Hall, 19883.

————— . SunCore Reference Manral. Sun Microsystens,
Mountain View, CA, 1986.

114

vita

Captain Stuart A. Yarost was born in Detroit, Michigan
on 17 February 1963. Following graduation from high schcol
in Southfield, Michigan in 1981, he attended Michigan 3tate
University, where he graduated with honor with a Bachelor of
Science in Electrical Engineering. During his time at
Michigan State University, he entered the College Senior
EFngineering Program (CSEP) of the US3AF. This led to his
commission in the USAF after finishing Officer Training School
on 13 September 1985, His first assignment was to the
6520th Test Group at Edwards AFB, where his jobs included
microcomputer manager, training marager, program analyst, and
avionics flight test engineer at the F-16 Combined Test Force.
He was selected for full-time attendance to the Air Force
Institute of Technology in December of 1987. He is happily
married to his wife Debbie, and will remain at
Wright-Patterson AFB after graduation, to work for AFLC at

ALD.

Permanent address: 7080 Clements

West Bloomfield, Mi., 48322

115

19, (cont!} ABSTRACT

This thesis proposes a system for higher-order logic extraction of
components from a net-list of transistors and the graphical display of the
extracted cemponents, Critical sections have been implemented to dcwunsivate
the feasibility of the system. These sections include a prototype expert
svstem written in CLIPS and a graphical display capable of displaying extracted
components on a Sun workstation,

Extraction techniques which were developed in this effort use pattern
matching and multiple passes. Graphical techniques used in the display
include simple line drawing and translation of images.

This research has the potential to provide savings of time and effort to
engineers designing new circuits or reverse-engineering older circuits for
which no adequate specifications exist. This systea will also help to close
the design cvcle and allow the designer to assure that what he has physically
designed is what he has logically designed.

—

UNCLASSTHTIED
SECURITY CLASS FICATON OF Thi5 DAGE

Form Approved
REPORT DOCUMENTATION PAGE OMBNop0704-0188
a REPORT SECURITY CLASSIFCATION 1b RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION /AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION - DOWNGRADING SCHEDULE distribution unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
AFIT/GCE/ENG/89D-9
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL [7a. NAME OF MONITORING ORGANIZATION
(If applicable)
School of Engineering AFIT/ENG
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Air Force Institute of Technology(AU)
Wright-Patterson AFB, OHIO 45433-6583
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
WRDC/ ELED WRDC/ELED
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
Wright Research and Developement Center PROGRAM PROJECT TASK WORK UNIT
. . . _ Al | _
Wright-Patterson AFB, OHIO 45433 ELEMENT NO. I NO NO CCESSION NO
11. TITLE (Include Security Classification)
(UNCLASSIFIED)
A CIRCUIT EXTRACTION SYSTEM AND GRAPHICAL DISPLAY FOR VLSI DESIGN
12. PERSONAL AUTHOR(S)
Stuart A. Yarost, Captain, USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
MS Thesis FROM TO 1989 December 122
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Circuit Extraction, Reverse Engineering, Integrated Circuits
09 0l Computer Aided Design, Artificial Intelligence,
12 09 Graphical Display
19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Dr. Frank M. Brown, Professor of Electrical Engineering
20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
O uncuassiFieo/unLimiteo X same as ket [(J omic users | UNCLASSIFIED
22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TE'EN1ICNE (Include Area Cndy; | 22¢. OFFICE SYMBOL
Dr. Frank M. Brown (513)255-9265 AFIT/ENG
R

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

